Synergistic design of Mo-intercalated NiSe2: a binary transition metal chalcogenide for highly efficient bifunctional seawater electrolysis

Ji J, Li Y, Peng W et al (2015) Advanced Graphene-based Binder-Free electrodes for High-Performance Energy Storage. Adv Mater 27:5264–5279. https://doi.org/10.1002/adma.201501115

Article  CAS  PubMed  Google Scholar 

Nallal M, Park KH, Park S et al (2022) Cu2O/reduced graphene oxide nanocomposites for electrocatalytic overall water splitting. ACS Appl Nano Mater 5:17271–17280. https://doi.org/10.1021/acsanm.2c04491

Article  CAS  Google Scholar 

Madhu R, Jayan R, Karmakar A et al (2022) Rationally constructing chalcogenide–hydroxide heterostructures with amendment of electronic structure for overall water-splitting reaction. ACS Sustain Chem Eng 10:11299–11309. https://doi.org/10.1021/acssuschemeng.2c03292

Article  CAS  Google Scholar 

Gao Y, He W, Cao D et al (2023) Mo-Doped Ni3S2 nanosheet arrays for overall water splitting. ACS Appl Nano Mater 6:6066–6075. https://doi.org/10.1021/acsanm.3c00398

Article  CAS  Google Scholar 

Wang Z, Zhou T, Chen Z et al (2023) Three-dimensional strawlike MoSe2-Ni(Fe)Se electrocatalysts for overall water splitting. Inorg Chem 62:2894–2904. https://doi.org/10.1021/acs.inorgchem.2c04354

Article  CAS  PubMed  Google Scholar 

Velpandian M, Ragunathan A, Ummethala G et al (2023) Low-potential overall water splitting induced by engineered CoTe2–WTe2 heterointerfaces. ACS Appl Energy Mater 6:5968–5978. https://doi.org/10.1021/acsaem.3c00412

Article  CAS  Google Scholar 

Cai J, Cao A, Wang Z et al (2021) Surface oxygen vacancies promoted Pt redispersion to single-atoms for enhanced photocatalytic hydrogen evolution. J Mater Chem A 9:13890–13897. https://doi.org/10.1039/D1TA01400E

Article  CAS  Google Scholar 

Xia BY, Wu HB, Li N et al (2015) One-Pot synthesis of Pt-Co Alloy Nanowire Assemblies with tunable composition and enhanced Electrocatalytic Properties. Angew Chem Int Ed 54:3797–3801. https://doi.org/10.1002/anie.201411544

Article  CAS  Google Scholar 

Lai J, Lin F, Tang Y et al (2019) Efficient Bifunctional Polyalcohol Oxidation and Oxygen Reduction Electrocatalysts enabled by ultrathin PtPdM (M = ni, Fe, Co) Nanosheets. Adv Energy Mater 9:1800684. https://doi.org/10.1002/aenm.201800684

Article  CAS  Google Scholar 

Zhang M, Chen J, Li H et al (2019) Ru-RuO2/CNT hybrids as high-activity pH-universal electrocatalysts for water splitting within 0.73 V in an asymmetric-electrolyte electrolyzer. Nano Energy 61:576–583. https://doi.org/10.1016/j.nanoen.2019.04.050

Article  CAS  Google Scholar 

Li L, Wang X, Guo Y, Li J (2020) Synthesis of an Ultrafine CoP Nanocrystal/Graphene sandwiched structure for efficient overall water splitting. Langmuir 36:1916–1922. https://doi.org/10.1021/acs.langmuir.9b03810

Article  CAS  PubMed  Google Scholar 

Guo F, Li W, Liu Y et al (2023) Heterogeneous Fe-Doped NiCoP–MoO3 efficient electrocatalysts for overall water splitting. Langmuir 39:1042–1050. https://doi.org/10.1021/acs.langmuir.2c02678

Article  CAS  Google Scholar 

Giuffredi G, Asset T, Liu Y et al (2021) Transition metal chalcogenides as a versatile and tunable platform for catalytic CO2 and N2 electroreduction. ACS Mater Au 1:6–36. https://doi.org/10.1021/acsmaterialsau.1c00006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anantharaj S, Ede SR, Sakthikumar K et al (2016) Recent trends and perspectives in Electrochemical Water splitting with an emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: a review. ACS Catal 6:8069–8097. https://doi.org/10.1021/acscatal.6b02479

Article  CAS  Google Scholar 

Liu Y, Guo Y, Liu Y et al (2023) A Mini Review on Transition Metal Chalcogenides for Electrocatalytic Water Splitting: bridging Material Design and practical application. Energy Fuels 37:2608–2630. https://doi.org/10.1021/acs.energyfuels.2c03833

Article  CAS  Google Scholar 

Jiang B, Liu Y, Zhang J et al (2022) Synthesis of bimetallic nickel cobalt selenide particles for high-performance hybrid supercapacitors. RSC Adv 12:1471–1478. https://doi.org/10.1039/D1RA08678B

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen C, Deng H, Wang C et al (2021) Petal-like CoMoO4 clusters grown on carbon cloth as a binder-free electrode for supercapacitor application. ACS Omega 6:19616–19622. https://doi.org/10.1021/acsomega.1c02166

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng X, Yan Y, Jin X et al (2020) Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 78:105234. https://doi.org/10.1016/j.nanoen.2020.105234

Article  CAS  Google Scholar 

Ahmed M, Lakhan MN, Shar AH et al (2022) Electrochemical performance of grown layer of Ni(OH)2 on nickel foam and treatment with phosphide and selenide for efficient water splitting. J Indian Chem Soc 99:100281. https://doi.org/10.1016/j.jics.2021.100281

Article  CAS  Google Scholar 

Hanan A, Solangi MY, Laghari AJ et al (2022) PdO@CoSe2 composites: efficient electrocatalysts for water oxidation in alkaline media. RSC Adv 13:743–755. https://doi.org/10.1039/D2RA07340D

Article  PubMed  Google Scholar 

Qureshi RA, Hanan A, Abro MI et al (2023) Facile eggplant assisted mixed metal oxide nanostructures: a promising electrocatalyst for water oxidation in alkaline media. Mater Today Sustain 23:100446. https://doi.org/10.1016/j.mtsust.2023.100446

Article  Google Scholar 

Solangi MY, Aftab U, Tahira A et al (2023) In-situ growth of nonstoichiometric CrO0.87 and Co3O4 hybrid system for the enhanced electrocatalytic water splitting in alkaline media. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2023.06.059

Article  Google Scholar 

Hanan A, Lakhan MN, Shu D et al (2023) An efficient and durable bifunctional electrocatalyst based on PdO and Co2FeO4 for HER and OER. Int J Hydrog Energy 48:19494–19508. https://doi.org/10.1016/j.ijhydene.2023.02.049

Article  CAS  Google Scholar 

Wang Y, Liu R, Sun S, Wu X (2019) Facile synthesis of nickel-cobalt selenide nanoparticles as battery-type electrode for all-solid-state asymmetric supercapacitors. J Colloid Interface Sci 549:16–21. https://doi.org/10.1016/j.jcis.2019.04.049

Article  CAS  PubMed  Google Scholar 

Patil K, Babar P, Li X et al (2022) Facile electrodeposited NiMoSe nanospheres for hydrogen evolution reaction. Mater Lett 310:131409. https://doi.org/10.1016/j.matlet.2021.131409

Article  CAS  Google Scholar 

Wang H, Jiao X, Zeng W et al (2021) Electrodeposition NiMoSe ternary nanoshperes on nickel foam as bifunctional electrocatalyst for urea electrolysis and hydrogen evolution reaction. Int J Hydrog Energy 46:37792–37801. https://doi.org/10.1016/j.ijhydene.2021.09.050

Article  CAS  Google Scholar 

Francis MK, Bhargav RM, Ahmed PB (2023) Co0.75Mo3S3.75/CoS2@2D-MoS2 nanosheets on carbon cloth: a progressive binder-free electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.12.234

Article  Google Scholar 

Kandel MR, Pan UN, Paudel DR et al (2022) Hybridized bimetallic phosphides of Ni–Mo, Co–Mo, and Co–Ni in a single ultrathin-3D-nanosheets for efficient HER and OER in alkaline media. Compos Part B 239:109992. https://doi.org/10.1016/j.compositesb.2022.109992

Article  CAS  Google Scholar 

Sakthivel M, Ramaraj S, Chen S-M et al (2019) Transition-metal-doped Molybdenum diselenides with defects and abundant active sites for efficient performances of Enzymatic Biofuel Cell and Supercapacitor Applications. ACS Appl Mater Interfaces 11:18483–18493. https://doi.org/10.1021/acsami.9b04884

Article  CAS  PubMed  Google Scholar 

Shakeel N, Ahamed MI, Inamuddin et al (2021) Hydrothermally synthesized defective NiMoSe2 nanoplates decorated on the surface of functionalized SWCNTs doped polypyrrole scaffold for enzymatic biofuel cell applications. Int J Hydrog Energy 46:3240–3250. https://doi.org/10.1016/j.ijhydene.2020.04.144

Article  CAS  Google Scholar 

Vidhya MS, Yuvakkumar R, Ravi G et al (2021) Asymmetric polyhedron structured NiSe2@MoSe2 device for use as a supercapacitor. Nanoscale Adv 3:4207–4215. https://doi.org/10.1039/D0NA01047B

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan BA, Hussain R, Shah A et al (2022) NiSe2 nanocrystals intercalated rGO sheets as a high-performance asymmetric supercapacitor electrode. Ceram Int 48:5509–5517. https://doi.org/10.1016/j.ceramint.2021.11.095

Article  CAS  Google Scholar 

Zhang J, Kang W, Jiang M et al (2017) Conversion of 1T-MoSe2 to 2H-MoS2xSe2 – 2x mesoporous nanospheres for superior sodium storage performance. Nanoscale 9:1484–1490. https://doi.org/10.1039/C6NR09166K

Article  CAS  PubMed  Google Scholar 

Zheng L-J, Zhang B-P, Han C-G et al (2016) Mechanical alloying-spark plasma sintering synthesis and thermoelectric properties of n-type NiSe2 + x semiconductors: analysis of intrinsic defects and phase structures. J Mater Sci 27:8363–8369. https://doi.org/10.1007/s10854-016-4847-0

Article  CAS  Google Scholar 

Kirubasankar B, Vijayan S, Angaiah S (2019) Sonochemical synthesis of a 2D–2D MoSe2/graphene nanohybrid electrode material for asymmetric supercapacitors. Sustain Energy Fuels 3:467–477. https://doi.org/10.1039/C8SE00446C

Article  CAS  Google Scholar 

Dai T, Sun J, Peng X et al (2022) In situ synthesis of heterogeneous NiSe2/MoSe2 nanocomposite for high-efficiency electrocatalytic hydrogen evolution reaction. Energy Sci Eng 10:4061–4070. https://doi.org/10.1002/ese3.1270

Article  CAS 

留言 (0)

沒有登入
gif