Harnessing innate immune pathways for therapeutic advancement in cancer

Bagchi, S., Yuan, R. & Engleman, E. G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16, 223–249 (2021).

Article  CAS  PubMed  Google Scholar 

Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197–218 (2019).

Article  CAS  PubMed  Google Scholar 

Miyazawa, M. et al. Advances in immunotherapy for pancreatic ductal adenocarcinoma. J. Hepatobiliary Pancreat. Sci. 28, 419–430 (2021).

Article  PubMed  Google Scholar 

Jackson, C. M., Choi, J. & Lim, M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat. Immunol. 20, 1100–1109 (2019).

Article  CAS  PubMed  Google Scholar 

Demaria, O. et al. Harnessing innate immunity in cancer therapy. Nature 574, 45–56 (2019).

Article  CAS  PubMed  Google Scholar 

Xiong, S., Dong, L. & Cheng, L. Neutrophils in cancer carcinogenesis and metastasis. J. Hematol. Oncol. 14, 173 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018).

Article  CAS  PubMed  Google Scholar 

Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, A. et al. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J. Hematol. Oncol. 12, 35 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Urban-Wojciuk, Z. et al. The role of TLRs in anti-cancer immunity and tumor rejection. Front. Immunol. 10, 2388 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mills, K. H. TLR-dependent T cell activation in autoimmunity. Nat. Rev. Immunol. 11, 807–822 (2011).

Article  CAS  PubMed  Google Scholar 

Li, J. et al. Non-cell-autonomous cancer progression from chromosomal instability. Nature 620, 1080–1088 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21, 799–820 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cassetta, L. et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35, 588–602.e510 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mills, C. D. et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173 (2000).

Article  CAS  PubMed  Google Scholar 

Vesely, M. D., Kershaw, M. H., Schreiber, R. D. & Smyth, M. J. Natural innate and adaptive immunity to cancer. Annu Rev. Immunol. 29, 235–271 (2011).

Article  CAS  PubMed  Google Scholar 

Mantovani, A. et al. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shiao, S. L. et al. TH2-polarized CD4(+) T cells and macrophages limit efficacy of radiotherapy. Cancer Immunol. Res. 3, 518–525 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeNardo, D. G. et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91–102 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Monte, L. et al. Basophil recruitment into tumor-draining lymph nodes correlates with Th2 inflammation and reduced survival in pancreatic cancer patients. Cancer Res. 76, 1792–1803 (2016).

Article  PubMed  Google Scholar 

Bosurgi, L. et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 356, 1072–1076 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mantovani, A. & Allavena, P. The interaction of anticancer therapies with tumor-associated macrophages. J. Exp. Med. 212, 435–445 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mertens, C. et al. Intracellular iron chelation modulates the macrophage iron phenotype with consequences on tumor progression. PLoS ONE 11, e0166164 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Mertens, C. et al. Macrophage-derived lipocalin-2 transports iron in the tumor microenvironment. OncoImmunology 7, e1408751 (2018).

Article  PubMed  Google Scholar 

Wenes, M. et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 24, 701–715 (2016).

Article  CAS  PubMed  Google Scholar 

Penny, H. L. et al. Targeting glycolysis in macrophages confers protection against pancreatic ductal adenocarcinoma. Int. J. Mol. Sci. 22, 6350 (2021).

Chen, Y. J. et al. Lactate metabolism is associated with mammalian mitochondria. Nat. Chem. Biol. 12, 937–943 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Netea-Maier, R. T., Smit, J. W. A. & Netea, M. G. Metabolic changes in tumor cells and tumor-associated macrophages: a mutual relationship. Cancer Lett. 413, 102–109 (2018).

Article  CAS  PubMed  Google Scholar 

Vitale, I. et al. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30, 36–50 (2019).

Article  CAS  PubMed  Google Scholar 

Zhang, X., Ji, L. & Li, M. O. Control of tumor-associated macrophage responses by nutrient acquisition and metabolism. Immunity 56, 14–31 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bianchini, G. & Gianni, L. The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncol. 15, e58–e68 (2014).

Article  CAS  PubMed  Google Scholar 

Liu, M. et al. Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated ‘don’t-eat-me’ signal. Nat. Immunol. 20, 265–275 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, X. et al. Repolarizing heterogeneous leukemia-associated macrophages with more M1 characteristics eliminates their pro-leukemic effects. OncoImmunology 7, e1412910 (2018).

Article  PubMed  Google Scholar 

Lin, H. et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J. Clin. Invest. 128, 805–815 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Advani, R. et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s Lymphoma. N. Engl. J. Med. 379, 1711–1721 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Locati, M., Curtale, G. & Mantovani, A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev. Pathol. 15, 123–147 (2020).

Article  CAS  PubMed  Google Scholar 

Franklin, R. A. et al. The cellular and molecular origin of tumor-associated macrophages. Science 344, 921–925 (2014).

留言 (0)

沒有登入
gif