Characterization of Gold-Enhanced Titania: Boosting Cell Proliferation and Combating Bacterial Infestation

Csapo R, Gumpenberger M, Wessner B. Skeletal muscle extracellular matrix–what do we know about its composition, regulation, and physiological roles? Narrative Rev Front Physiol. 2020;11:253.

Article  Google Scholar 

Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8:457–65.

Article  CAS  PubMed  Google Scholar 

Abdel-Raouf N, Al-Enazi NM, Ibraheem IB. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem. 2017;10:S3029–39.

Article  CAS  Google Scholar 

Aljabali AA, Akkam Y, Al Zoubi MS, Al-Batayneh KM, Al-Trad B, Abo Alrob O, et al. Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials. 2018;8:174.

Article  PubMed  PubMed Central  Google Scholar 

Yeh YC, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4:1871–80.

Article  CAS  PubMed  Google Scholar 

da Rocha FR, Haupenthal DPdS, Zaccaron RP, Corrêa MEAB, Tramontin NdS, Fonseca JP, et al. Therapeutic effects of iontophoresis with gold nanoparticles in the repair of traumatic muscle injury. J Drug Target. 2020;28:307–19.

Article  PubMed  Google Scholar 

Opris R, Tatomir C, Olteanu D, Moldovan R, Moldovan B, David L, et al. The effect of Sambucus nigra L. extract and phytosinthesized gold nanoparticles on diabetic rats. Colloids Surf B: Biointerfaces. 2017;150:192–200.

Article  CAS  PubMed  Google Scholar 

Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello VM, Mukherjee P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomed Nanotechnol Biol Med. 2011;7:580–7.

Article  CAS  Google Scholar 

Saha S, Xiong X, Chakraborty PK, Shameer K, Arvizo RR, Kudgus RA, et al. Gold nanoparticle reprograms pancreatic tumor microenvironment and inhibits tumor growth. ACS Nano. 2016;10:10636–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaheen TI, El-Naggar ME, Hussein JS, El-Bana M, Emara E, El-Khayat Z, et al. Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomed Pharm. 2016;83:865–75.

Article  CAS  Google Scholar 

Ge J, Liu K, Niu W, Chen M, Wang M, Xue Y, et al. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration. Biomaterials. 2018;175:19–29.

Article  CAS  PubMed  Google Scholar 

Al-Shwaheen A, Aljabali AA, Alomari G, Al Zoubi M, Alshaer W, Al-Trad B, et al. Molecular and cellular effects of gold nanoparticles treatment in experimental diabetic myopathy. Heliyon. 2022;8:e10358.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ehlert M, Roszek K, Jędrzejewski T, Bartmański M, Radtke A. Titania nanofiber scaffolds with enhanced biointegration activity—preliminary in vitro studies. Int J Mol Sci. 2019;20:5642.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8:543–57.

Article  CAS  PubMed  Google Scholar 

Shin YJ, Lee HI, Kim MK, Wee WR, Lee JH, Koh JH, et al. Biocompatibility of nanocomposites used for artificial conjunctiva: in vivo experiments. Curr Eye Res. 2007;32:1–10.

Article  CAS  PubMed  Google Scholar 

Martin J, Dean D, Cochran D, Simpson J, Boyan B, Schwartz Z. Proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63) cultured on previously used titanium surfaces. Clin Oral Implant Res. 1996;7:27–37.

Article  CAS  Google Scholar 

Yoo KC, Yoon CH, Kwon D, Hyun KH, Woo SJ, Kim RK, et al. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation. Int J Nanomed. 2012;15:1203–14.

Google Scholar 

Amna T, Hassan MS, Shin W-S, Van Ba H, Lee H-K, Khil M-S, et al. TiO2 nanorods via one-step electrospinning technique: a novel nanomatrix for mouse myoblasts adhesion and propagation. Colloids Surf B. 2013;101:424–9.

Article  CAS  Google Scholar 

Amna T, Shamshi Hassan M, Khil MS, Lee HK, Hwang I. Electrospun nanofibers of ZnO-TiO2 hybrid: characterization and potential as an extracellular scaffold for supporting myoblasts. Surf Interface Anal. 2014;46:72–6.

Article  CAS  Google Scholar 

Amna T, Hassan MS, Khil M-S, Hwang I. Interaction of magnetic cobalt based titanium dioxide nanofibers with muscle cells: in vitro cytotoxicity evaluation. J Solgel Sci Technol. 2014;69:338–44.

Article  CAS  Google Scholar 

Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41:2256–82.

Article  CAS  PubMed  Google Scholar 

Kumar A, Zhang X, Liang XJ. Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv. 2013;31:593–606.

Article  CAS  PubMed  Google Scholar 

Zhang D, Liu D, Zhang J, Fong C, Yang M. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway. Mater Sci Eng, C. 2014;42:70–7.

Article  Google Scholar 

Ko WK, Heo DN, Moon HJ, Lee SJ, Bae MS, Lee JB, et al. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci. 2015;438:68–76.

Article  CAS  PubMed  Google Scholar 

Heo DN, Ko WK, Bae MS, Lee JB, Lee DW, Byun W, et al. Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. J Mater Chem B. 2014;2:1584–93.

Article  CAS  PubMed  Google Scholar 

Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee SJ, Heo DN, Lee HR, Lee D, Yu SJ, Park SA, et al. Biofunctionalized titanium with anti-fouling resistance by grafting thermo-responsive polymer brushes for the prevention of peri-implantitis. J Mater Chem B. 2015;3:5161–5.

Article  CAS  PubMed  Google Scholar 

Heo DN, Ko WK, Lee HR, Lee SJ, Lee D, Um SH, et al. Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration. J Colloid Interface Sci. 2016;469:129–37.

Article  CAS  PubMed  Google Scholar 

Younis AB, Haddad Y, Kosaristanova L, Smerkova K. Titanium dioxide nanoparticles: Recent progress in antimicrobial applications. Wiley Interdiscip Rev: Nanomed Nanobiotechnol. 2022;15:e1860.

PubMed  Google Scholar 

Amna T, Hassan MS. Nanofibers and nanotextured materials: design insights. Bact Mech Environ Adv. 2023;13:2891.

CAS  Google Scholar 

Amna T, Gharsan FN, Shang K, Hassan MS, Khil M-S, Hwang I. Electrospun twin fibers encumbered with intrinsic antioxidant activity as prospective bandage. Macromol Res. 2019;27:663–9.

Article  CAS  Google Scholar 

Algethami JS, Amna T, Alqarni SL, Alshahrani AA, Alhamami MA, Seliem AF, et al. Production of ceramics/metal oxide nanofibers via electrospinning: new insights into the photocatalytic and bactericidal mechanisms. Materials. 2023;16:5148.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keirouz A, Chung M, Kwon J, Fortunato G, Radacsi N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: a review. Wiley Interdiscip Rev: Nanomed Nanobiotechnol. 2020;12:e1626.

PubMed  Google Scholar 

Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, et al. Electrospinning for tissue engineering applications. Prog Mater Sci. 2021;117:100721.

Article  CAS  Google Scholar 

Zulkifli MZA, Nordin D, Shaari N, Kamarudin SK. Overview of electrospinning for tissue engineering applications. Polymers (Basel). 2023;15:2418.

Article  CAS  PubMed  Google Scholar 

Amna T, Alghamdi AA, Shang K, Hassan MS. Nigella sativa-coated hydroxyapatite scaffolds: synergetic cues to stimulate myoblasts differentiation and offset infections. Tissue Eng Regen Med. 2021;18:787–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amna T, Van Ba H, Vaseem M, Hassan MS, Khil MS, Hahn Y, et al. Apoptosis induced by copper oxide quantum dots in cultured C2C12 cells via caspase 3 and caspase 7: a study on cytotoxicity assessment. Appl Microbiol Biotechnol. 2013;97:5545–53.

Article  CAS  PubMed  Google Scholar 

Amna T, Hassan MS, Sheikh FA, Seo HC, Kim HC, Alotaibi N, et al. Natural mulberry biomass fibers doped with silver as an antimicrobial textile: a new generation fabric. Text Res J. 2021;91:2581–7.

Article  CAS 

留言 (0)

沒有登入
gif