Multiply restimulated human cord blood-derived Tregs maintain stabilized phenotype and suppressive function and predict their therapeutic effects on autoimmune diabetes

Bettini M, Bettini ML. Function, failure, and the future potential of Tregs in Type 1 diabetes. Diabetes. 2021;70(6):1211–9.

Article  PubMed  PubMed Central  Google Scholar 

Bluestone J, Buckner J, Herold K, Immunotherapy. Building a bridge to a cure for type 1 diabetes. Sci (New York NY). 2021;373(6554):510–6.

Article  CAS  Google Scholar 

Lindley S, Dayan C, Bishop A, Roep B, Peakman M, Tree T. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes. 2005;54(1):92–9.

Article  CAS  PubMed  Google Scholar 

Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, et al. Multiple immuno-regulatory defects in type-1 diabetes. J Clin Investig. 2002;109(1):131–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Radenkovic M, Silver C, Arvastsson J, Lynch K, Lernmark Å, Harris R, et al. Altered regulatory T cell phenotype in latent autoimmune diabetes of the adults (LADA). Clin Exp Immunol. 2016;186(1):46–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Z, Zhou Z, Huang G, Ling H, Yan X, Peng J, et al. The CD4(+) regulatory T-cells is decreased in adults with latent autoimmune diabetes. Diabetes Res Clin Pract. 2007;76(1):126–31.

Article  CAS  PubMed  Google Scholar 

Salomon B, Lenschow D, Rhee L, Ashourian N, Singh B, Sharpe A, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4 + CD25 + immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12(4):431–40.

Article  CAS  PubMed  Google Scholar 

You S, Slehoffer G, Barriot S, Bach J, Chatenoud L. Unique role of CD4 + CD62L + regulatory T cells in the control of autoimmune diabetes in T cell receptor transgenic mice. Proc Natl Acad Sci USA. 2004:14580–5.

Tang Q, Henriksen K, Bi M, Finger E, Szot G, Ye J, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 2004;199(11):1455–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petzold C, Riewaldt J, Watts D, Sparwasser T, Schallenberg S, Kretschmer K. Foxp3(+) regulatory T cells in mouse models of type 1 diabetes. J Diabetes Res. 2013;2013:940710.

Article  PubMed  PubMed Central  Google Scholar 

Wang G, Yan Y, Xu N, Yin D, Hui Y. Treatment of type 1 diabetes by regulatory T-cell infusion via regulating the expression of inflammatory cytokines. J Cell Biochem. 2019;120(12):19338–44.

Article  CAS  PubMed  Google Scholar 

Szanya V, Ermann J, Taylor C, Holness C, Fathman C. The subpopulation of CD4 + CD25 + splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J Immunol (Baltimore Md: 1950). 2002;169(5):2461–5.

Article  CAS  Google Scholar 

Orban T, Bundy B, Becker D, DiMeglio L, Gitelman S, Goland R, et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet (London England). 2011;378(9789):412–9.

Article  CAS  PubMed  Google Scholar 

Sherry N, Hagopian W, Ludvigsson J, Jain S, Wahlen J, Ferry R, et al. Teplizumab for treatment of type 1 diabetes (Protégé study): 1-year results from a randomised, placebo-controlled trial. Lancet (London England). 2011;378(9790):487–97.

Article  CAS  PubMed  Google Scholar 

Haller MJ, Gitelman SE, Gottlieb PA, Michels AW, Rosenthal SM, Shuster JJ, et al. Anti-thymocyte globulin/G-CSF treatment preserves beta cell function in patients with established type 1 diabetes. J Clin Invest. 2015;125(1):448–55.

Article  PubMed  Google Scholar 

Rigby MR, Harris KM, Pinckney A, DiMeglio LA, Rendell MS, Felner EI, et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2015;125(8):3285–96.

Article  PubMed  PubMed Central  Google Scholar 

Herold K, Bundy B, Long S, Bluestone J, DiMeglio L, Dufort M, et al. An Anti-CD3 antibody, Teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med. 2019;381(7):603–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramos E, Dayan C, Chatenoud L, Sumnik Z, Simmons K, Szypowska A, et al. Teplizumab and β-Cell function in newly diagnosed type 1 diabetes. N Engl J Med. 2023;389(23):2151–61.

Article  CAS  PubMed  Google Scholar 

Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Yin Z, et al. Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med. 2012;10:3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haller MJ, Gitelman SE, Gottlieb PA, Michels AW, Rosenthal SM, Shuster JJ, et al. Anti-thymocyte globulin/G-CSF treatment preserves β cell function in patients with established type 1 diabetes. J Clin Invest. 2015;125(1):448–55.

Article  PubMed  Google Scholar 

Haller MJ, Long SA, Blanchfield JL, Schatz DA, Skyler JS, Krischer JP, et al. Low-dose anti-thymocyte globulin preserves C-Peptide, reduces HbA (1c), and increases Regulatory to Conventional T-Cell Ratios in New-Onset type 1 diabetes: two-year clinical Trial Data. Diabetes. 2019;68(6):1267–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Techmanska I, Juscinska J, et al. Administration of CD4 + CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care. 2012;35(9):1817–20.

Article  PubMed  PubMed Central  Google Scholar 

Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Derkowska I, Juscinska J, et al. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin Immunol. 2014;153(1):23–30.

Article  CAS  PubMed  Google Scholar 

Bluestone J, Buckner J, Fitch M, Gitelman S, Gupta S, Hellerstein M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7(315):315ra189.

Article  PubMed  PubMed Central  Google Scholar 

Godfrey W, Spoden D, Ge Y, Baker S, Liu B, Levine B, et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood. 2005;105(2):750–8.

Article  CAS  PubMed  Google Scholar 

Figueroa-Tentori D, Querol S, Dodi IA, Madrigal A, Duggleby R. High purity and yield of natural tregs from cord blood using a single step selection method. J Immunol Methods. 2008;339(2):228–35.

Article  CAS  PubMed  Google Scholar 

Seay H, Putnam A, Cserny J, Posgai A, Rosenau E, Wingard J, et al. Expansion of human tregs from Cryopreserved umbilical cord blood for GMP-Compliant autologous adoptive cell transfer therapy. Mol Therapy Methods Clin Dev. 2017;4:178–91.

Article  CAS  Google Scholar 

Takahata Y, Nomura A, Takada H, Ohga S, Furuno K, Hikino S, et al. CD25 + CD4 + T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp Hematol. 2004;32(7):622–9.

Article  CAS  PubMed  Google Scholar 

Hoffmann P, Eder R, Boeld TJ, Doser K, Piseshka B, Andreesen R, et al. Only the CD45RA + subpopulation of CD4 + CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood. 2006;108(13):4260–7.

Article  CAS  PubMed  Google Scholar 

Fan H, Yang J, Hao J, Ren Y, Chen L, Li G, et al. Comparative study of regulatory T cells expanded ex vivo from cord blood and adult peripheral blood. Immunology. 2012;136(2):218–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Motwani K, Peters L, Vliegen W, El-Sayed A, Seay H, Lopez M, et al. Human Regulatory T Cells from Umbilical Cord Blood Display Increased Repertoire Diversity and Lineage Stability Relative to adult peripheral blood. Front Immunol. 2020;11:611.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strauss L, Whiteside T, Knights A, Bergmann C, Knuth A, Zippelius A. Selective survival of naturally occurring human CD4 + CD25 + Foxp3 + regulatory T cells cultured with rapamycin. J Immunol (Baltimore Md: 1950). 2007;178(1):320–9.

Article  CAS  Google Scholar 

Battaglia M, Stabilini A, Roncarolo M. Rapamycin selectively expands CD4 + CD25 + FoxP3 + regulatory T cells. Blood. 2005;105(12):4743–8.

Article  CAS  PubMed  Google Scholar 

Maecker H, Trotter J. Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry Part A: The Journal of the International Society for Analytical Cytology. 2006;69(9):1037–42.

Article  PubMed  Google Scholar 

Brunstein C, Miller J, Cao Q, McKenna D, Hippen K, Curtsinger J, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061–70.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif