The effect of cytochrome c on Na,K-ATPase

Ackermann U, Geering K (1990) Mutual dependence of Na, K-ATPase α- and β-subunits for correct posttranslational processing and intracellular transport. FEBS Lett 269(1):105–108. https://doi.org/10.1016/0014-5793(90)81130-g

Article  CAS  PubMed  Google Scholar 

Agekyan TA (1969) Fundamentals of the theory of errors for Astronomers and Physicists. Sov Astron 13:171

Google Scholar 

Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH (2017) Addition and Correction to Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 117(23):14014–14014. https://doi.org/10.1021/acs.chemrev.7b00706

Article  CAS  PubMed  Google Scholar 

Aperia A, Akkuratov EE, Fontana JM, Brismar H (2016) Na+-K+-ATPase, a new class of plasma membrane receptors. Am J Physiol Cell Physiol 310(7):C491–C495. https://doi.org/10.1152/ajpcell.00359.2015

Article  PubMed  Google Scholar 

Bibert S, Liu CC, Figtree GA, Garcia A, Hamilton EJ, Marassi FM et al (2011) FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its beta1 subunit. J Biol Chem 286:18562–18572. https://doi.org/10.1074/jbc.M110.18410

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blanco G (2005) Na, K-ATPase Subunit Heterogeneity as a Mechanism for Tissue-Specific Ion Regulation. Semin Nephrol 25(5):292–303. https://doi.org/10.1016/j.semnephrol.2005.03.004

Article  CAS  PubMed  Google Scholar 

Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. American Journal of Physiology-Renal Physiology 275(5):F633–F650. https://doi.org/10.1152/ajprenal.1998.275.5.f633

Article  CAS  Google Scholar 

Blaustein MP, Hamlyn JM (2020) Ouabain, endogenous ouabain and ouabain-like factors: The Na+ pump/ouabain receptor, its linkage to NCX, and its myriad functions. Cell Calcium 86:102159. https://doi.org/10.1016/j.ceca.2020.102159

Article  CAS  PubMed  Google Scholar 

Bogdanova A, Petrushanko I, Boldyrev A, Gassmann M (2006) Oxygen- and Redox-Induced Regulation of the Na/K ATPase. Curr Enzym Inhib 2(1):37–59. https://doi.org/10.2174/157340806775473490

Article  CAS  Google Scholar 

Bogdanova A, Petrushanko IY, Hernansanz-Agustín P, Martínez-Ruiz A (2016) Oxygen sensing by Na,K-ATPase: these miraculous thiols. Front Pharmacol 7:314. https://doi.org/10.3389/fphys.2016.00314

Buck LT, Hochachka PW (1993) Anoxic suppression of Na+-K+-ATPase and constant membrane potential in hepatocytes: support for channel arrest. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 265(5):R1020–R1025. https://doi.org/10.1152/ajpregu.1993.265.5.r1020

Article  CAS  Google Scholar 

Chen Z, Krmar RT, Dada L, Efendiev R, Leibiger IB, Pedemonte CH, Katz AI, Sznajder JI, Bertorello AM (2006) Phosphorylation of Adaptor Protein–2 μ2 Is Essential for Na+, K+-ATPase Endocytosis in Response to Either G Protein-Coupled Receptor or Reactive Oxygen Species. Am J Respir Cell Mol Biol 35(1):127–132. https://doi.org/10.1165/rcmb.2006-0044oc

Article  PubMed  PubMed Central  Google Scholar 

Chkadua G, Nozadze E, Tsakadze L, Shioshvili L, Leladze M, Arutinova N, Dzneladze S, Javakhishvili M, Kupradze S (2022a) Some Kinetic Features of Na, K-ATPase and Sensitivity to Noradrenalione. Cell Biochemistry and Biophysics 80(1):23–29. https://doi.org/10.1007/s12013-021-01032-6

Article  CAS  PubMed  Google Scholar 

Chkadua G, Nozadze E, Tsakadze L, Shioshvili L, Arutinova N, Leladze M, Dzneladze S&Javakhishvili M, (2022b) Effect of H2O2 on Na, K-ATPase. J Bioenerg Biomembr 54:241–249. https://doi.org/10.1007/s10863-022-09948-1

Article  CAS  PubMed  Google Scholar 

Dada LA, Chandel NS, Ridge KM, Pedemonte C, Bertorello AM, Sznajder JI (2003) Hypoxia-induced endocytosis of Na, K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-ζ. J Clin Investig 111(7):1057–1064. https://doi.org/10.1172/jci16826

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Robertis E (1969) Structural components of the synaptic region. Structural Neurochemistry 2:365–380. https://doi.org/10.1007/978-1-4615-7157-5_15

Article  Google Scholar 

Demos MK, Van Karnebeek CD, Ross CJ, Adam S, Shen Y, Zhan SH, Shyr C, Horvath G, Suri M, Fryer A, Jones SJ, Friedman JM (2014) A novel recurrent mutation in ATP1A3 causes CAPOS syndrome. Orphanet J Rare Dis 9(1):15. https://doi.org/10.1186/1750-1172-9-15

Article  PubMed  PubMed Central  Google Scholar 

Dickerson RE (1971) The structure of cytochrome c and the rates of molecular evolution. J Mol Evol 1(1):26–45. https://doi.org/10.1007/bf01659392

Article  CAS  PubMed  Google Scholar 

Dobretsov M (2005) Neuronal function and alpha3 isoform of the Na/K-ATPase. Front Biosci 10(1–3):2373. https://doi.org/10.2741/1704

Article  CAS  PubMed  Google Scholar 

Doll CJ, Hochachka PW, Reiner PB (1991) Channel arrest: implications from membrane resistance in turtle neurons. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 261(5):R1321–R1324. https://doi.org/10.1152/ajpregu.1991.261.5.r1321

Article  CAS  Google Scholar 

Eleftheriadis T, Pissas G, Liakopoulos V, Stefanidis I (2016) Cytochrome c as a potentially clinical useful marker of mitochondrial and cellular damage. Front Immunol 7:279. https://doi.org/10.3389/fimmu.2016.00279

Fiske GH, Subbarow Y (1925) The colorimetric determination of phosphorus. Biological Chemistry 66:375–400. https://doi.org/10.1016/S0021-9258(18)84756-1

Article  CAS  Google Scholar 

Gallanti A, Tonelli A, Cardin V, Bussone G, Bresolin N, Bassi MT (2008) A novel de novo nonsense mutation in ATP1A2 associated with sporadic hemiplegic migraine and epileptic seizures. J Neurol Sci 273(1–2):123–126. https://doi.org/10.1016/j.jns.2008.06.006

Article  CAS  PubMed  Google Scholar 

Garty H, Karlish SJ (2006) Roleof FXYD proteins in ion transport. Annu Rev Physiol 68(1):431–459. https://doi.org/10.1146/annurev.physiol.68.040104.131852

Article  CAS  PubMed  Google Scholar 

Geering K (2001) The functional role of beta subunits in oligomeric P-type ATPases. J Bioenerg Biomembr 33:425–438. https://doi.org/10.1023/a:1010623724749

Article  CAS  PubMed  Google Scholar 

Geering K (2006) FXYD proteins: new regulators of Na-K-ATPase. American Journal of Physiology-Renal Physiology 290(2):F241–F250. https://doi.org/10.1152/ajprenal.00126.2005

Article  CAS  PubMed  Google Scholar 

Goldshleger R, Karlish SJD (1997) Fe-catalyzed cleavage of the α subunit of Na/K-ATPase: Evidence for conformation-sensitive interactions between cytoplasmic domains. Proc Natl Acad Sci 94(18):9596–9601. https://doi.org/10.1073/pnas.94.18.9596

Article  CAS  PubMed  PubMed Central  Google Scholar 

González-Arzola K, Velázquez-Cruz A, Guerra-Castellano A, Casado-Combreras MÁ, Pérez-Mejías G, Díaz-Quintana A, Díaz-Moreno I, De la Rosa MÁ (2019) New moonlighting functions of mitochondrial cytochrome c in the cytoplasm and nucleus. FEBS Lett 593(22):3101–3119. https://doi.org/10.1002/1873-3468.13655

Article  CAS  PubMed  Google Scholar 

Gouveia A, Bajwa E (1861) Extracellular cytochrome c as an intercellular signaling molecule regulating microglial functions. Biochimica Et Biophysica Acta (BBA) - General Subjects 9:2274–2281. https://doi.org/10.1016/j.bbagen.2017.06.017

Article  CAS  Google Scholar 

Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C (2013) Crystal structure of a Na+-bound Na+, K+-ATPase preceding the E1P state. Nature 502(7470):201–206. https://doi.org/10.1038/nature12578

Article  CAS  PubMed  Google Scholar 

Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71(1):511–535. https://doi.org/10.1146/annurev.biochem.71.102201.141218

Article  CAS  PubMed  Google Scholar 

Karlish SJD (1980) Characterization of conformational changes in (Na, K) ATPase labeled with fluorescein at the active site. J Bioenerg Biomembr 12(3–4):111–136. https://doi.org/10.1007/bf00744678

Article  CAS  PubMed  Google Scholar 

Kazanov A, Maslova M (1984) The investigation of activation of Na, K-ATPase in the red blood cells of mammals. Journal of Evol Biochemistry and Physiology 16(5):81–87

Google Scholar 

Khodjakov A, Rieder C, Mannella CA, Kinnally KW (2004) Laser micro-irradiation of mitochondria: is there an amplified mitochondrial death signal in neural cells? Mitochondrion 3(4):217–227. https://doi.org/10.1016/j.mito.2003.10.002

Article  CAS  PubMed  Google Scholar 

Kinoshita PF, Yshii LM, Vasconcelos AR, Orellana AMM, Lima LDS, Davel APC, Rossoni LV, Kawamoto EM, Scavone C (2014) Signaling function of Na,K-ATPase induced by ouabain against LPS as an inflammation model in hippocampus. J Neuroinflammation 11:218. https://doi.org/10.1186/s12974-014-0218-z

Klimanova EA, Petrushanko IY, Mitkevich VA, Anashkina AA, Orlov SN, Makarov AA, Lopina OD (2015) Binding of ouabain and marinobufagenin leads to different structural changes in Na, K-ATPase and depends on the enzyme conformation. FEBS Letters 589(19PartB):2668–2674. https://doi.org/10.1016/j.febslet.2015.08.011

Article  CAS  PubMed  Google Scholar 

Kometiani Z (2007) Kinetic analysis of multi-sited enzyme systems. Pub House Sakartvelos matsne Tbilisi, Georgia. https://doi.org/10.52340/9789994066308

Liu L, Ivanov AV, Gable ME, Jolivel F, Morrill GA, Askari A (2011) Comparative Properties of Caveolar and Noncaveolar Preparations of Kidney Na+/K+-ATPase. Biochemistry 50(40):8664–8673. https://doi.org/10.1021/bi2009008

留言 (0)

沒有登入
gif