Ackermann U, Geering K (1990) Mutual dependence of Na, K-ATPase α- and β-subunits for correct posttranslational processing and intracellular transport. FEBS Lett 269(1):105–108. https://doi.org/10.1016/0014-5793(90)81130-g
Article CAS PubMed Google Scholar
Agekyan TA (1969) Fundamentals of the theory of errors for Astronomers and Physicists. Sov Astron 13:171
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH (2017) Addition and Correction to Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 117(23):14014–14014. https://doi.org/10.1021/acs.chemrev.7b00706
Article CAS PubMed Google Scholar
Aperia A, Akkuratov EE, Fontana JM, Brismar H (2016) Na+-K+-ATPase, a new class of plasma membrane receptors. Am J Physiol Cell Physiol 310(7):C491–C495. https://doi.org/10.1152/ajpcell.00359.2015
Bibert S, Liu CC, Figtree GA, Garcia A, Hamilton EJ, Marassi FM et al (2011) FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its beta1 subunit. J Biol Chem 286:18562–18572. https://doi.org/10.1074/jbc.M110.18410
Article CAS PubMed PubMed Central Google Scholar
Blanco G (2005) Na, K-ATPase Subunit Heterogeneity as a Mechanism for Tissue-Specific Ion Regulation. Semin Nephrol 25(5):292–303. https://doi.org/10.1016/j.semnephrol.2005.03.004
Article CAS PubMed Google Scholar
Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. American Journal of Physiology-Renal Physiology 275(5):F633–F650. https://doi.org/10.1152/ajprenal.1998.275.5.f633
Blaustein MP, Hamlyn JM (2020) Ouabain, endogenous ouabain and ouabain-like factors: The Na+ pump/ouabain receptor, its linkage to NCX, and its myriad functions. Cell Calcium 86:102159. https://doi.org/10.1016/j.ceca.2020.102159
Article CAS PubMed Google Scholar
Bogdanova A, Petrushanko I, Boldyrev A, Gassmann M (2006) Oxygen- and Redox-Induced Regulation of the Na/K ATPase. Curr Enzym Inhib 2(1):37–59. https://doi.org/10.2174/157340806775473490
Bogdanova A, Petrushanko IY, Hernansanz-Agustín P, Martínez-Ruiz A (2016) Oxygen sensing by Na,K-ATPase: these miraculous thiols. Front Pharmacol 7:314. https://doi.org/10.3389/fphys.2016.00314
Buck LT, Hochachka PW (1993) Anoxic suppression of Na+-K+-ATPase and constant membrane potential in hepatocytes: support for channel arrest. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 265(5):R1020–R1025. https://doi.org/10.1152/ajpregu.1993.265.5.r1020
Chen Z, Krmar RT, Dada L, Efendiev R, Leibiger IB, Pedemonte CH, Katz AI, Sznajder JI, Bertorello AM (2006) Phosphorylation of Adaptor Protein–2 μ2 Is Essential for Na+, K+-ATPase Endocytosis in Response to Either G Protein-Coupled Receptor or Reactive Oxygen Species. Am J Respir Cell Mol Biol 35(1):127–132. https://doi.org/10.1165/rcmb.2006-0044oc
Article PubMed PubMed Central Google Scholar
Chkadua G, Nozadze E, Tsakadze L, Shioshvili L, Leladze M, Arutinova N, Dzneladze S, Javakhishvili M, Kupradze S (2022a) Some Kinetic Features of Na, K-ATPase and Sensitivity to Noradrenalione. Cell Biochemistry and Biophysics 80(1):23–29. https://doi.org/10.1007/s12013-021-01032-6
Article CAS PubMed Google Scholar
Chkadua G, Nozadze E, Tsakadze L, Shioshvili L, Arutinova N, Leladze M, Dzneladze S&Javakhishvili M, (2022b) Effect of H2O2 on Na, K-ATPase. J Bioenerg Biomembr 54:241–249. https://doi.org/10.1007/s10863-022-09948-1
Article CAS PubMed Google Scholar
Dada LA, Chandel NS, Ridge KM, Pedemonte C, Bertorello AM, Sznajder JI (2003) Hypoxia-induced endocytosis of Na, K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-ζ. J Clin Investig 111(7):1057–1064. https://doi.org/10.1172/jci16826
Article CAS PubMed PubMed Central Google Scholar
De Robertis E (1969) Structural components of the synaptic region. Structural Neurochemistry 2:365–380. https://doi.org/10.1007/978-1-4615-7157-5_15
Demos MK, Van Karnebeek CD, Ross CJ, Adam S, Shen Y, Zhan SH, Shyr C, Horvath G, Suri M, Fryer A, Jones SJ, Friedman JM (2014) A novel recurrent mutation in ATP1A3 causes CAPOS syndrome. Orphanet J Rare Dis 9(1):15. https://doi.org/10.1186/1750-1172-9-15
Article PubMed PubMed Central Google Scholar
Dickerson RE (1971) The structure of cytochrome c and the rates of molecular evolution. J Mol Evol 1(1):26–45. https://doi.org/10.1007/bf01659392
Article CAS PubMed Google Scholar
Dobretsov M (2005) Neuronal function and alpha3 isoform of the Na/K-ATPase. Front Biosci 10(1–3):2373. https://doi.org/10.2741/1704
Article CAS PubMed Google Scholar
Doll CJ, Hochachka PW, Reiner PB (1991) Channel arrest: implications from membrane resistance in turtle neurons. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 261(5):R1321–R1324. https://doi.org/10.1152/ajpregu.1991.261.5.r1321
Eleftheriadis T, Pissas G, Liakopoulos V, Stefanidis I (2016) Cytochrome c as a potentially clinical useful marker of mitochondrial and cellular damage. Front Immunol 7:279. https://doi.org/10.3389/fimmu.2016.00279
Fiske GH, Subbarow Y (1925) The colorimetric determination of phosphorus. Biological Chemistry 66:375–400. https://doi.org/10.1016/S0021-9258(18)84756-1
Gallanti A, Tonelli A, Cardin V, Bussone G, Bresolin N, Bassi MT (2008) A novel de novo nonsense mutation in ATP1A2 associated with sporadic hemiplegic migraine and epileptic seizures. J Neurol Sci 273(1–2):123–126. https://doi.org/10.1016/j.jns.2008.06.006
Article CAS PubMed Google Scholar
Garty H, Karlish SJ (2006) Roleof FXYD proteins in ion transport. Annu Rev Physiol 68(1):431–459. https://doi.org/10.1146/annurev.physiol.68.040104.131852
Article CAS PubMed Google Scholar
Geering K (2001) The functional role of beta subunits in oligomeric P-type ATPases. J Bioenerg Biomembr 33:425–438. https://doi.org/10.1023/a:1010623724749
Article CAS PubMed Google Scholar
Geering K (2006) FXYD proteins: new regulators of Na-K-ATPase. American Journal of Physiology-Renal Physiology 290(2):F241–F250. https://doi.org/10.1152/ajprenal.00126.2005
Article CAS PubMed Google Scholar
Goldshleger R, Karlish SJD (1997) Fe-catalyzed cleavage of the α subunit of Na/K-ATPase: Evidence for conformation-sensitive interactions between cytoplasmic domains. Proc Natl Acad Sci 94(18):9596–9601. https://doi.org/10.1073/pnas.94.18.9596
Article CAS PubMed PubMed Central Google Scholar
González-Arzola K, Velázquez-Cruz A, Guerra-Castellano A, Casado-Combreras MÁ, Pérez-Mejías G, Díaz-Quintana A, Díaz-Moreno I, De la Rosa MÁ (2019) New moonlighting functions of mitochondrial cytochrome c in the cytoplasm and nucleus. FEBS Lett 593(22):3101–3119. https://doi.org/10.1002/1873-3468.13655
Article CAS PubMed Google Scholar
Gouveia A, Bajwa E (1861) Extracellular cytochrome c as an intercellular signaling molecule regulating microglial functions. Biochimica Et Biophysica Acta (BBA) - General Subjects 9:2274–2281. https://doi.org/10.1016/j.bbagen.2017.06.017
Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C (2013) Crystal structure of a Na+-bound Na+, K+-ATPase preceding the E1P state. Nature 502(7470):201–206. https://doi.org/10.1038/nature12578
Article CAS PubMed Google Scholar
Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71(1):511–535. https://doi.org/10.1146/annurev.biochem.71.102201.141218
Article CAS PubMed Google Scholar
Karlish SJD (1980) Characterization of conformational changes in (Na, K) ATPase labeled with fluorescein at the active site. J Bioenerg Biomembr 12(3–4):111–136. https://doi.org/10.1007/bf00744678
Article CAS PubMed Google Scholar
Kazanov A, Maslova M (1984) The investigation of activation of Na, K-ATPase in the red blood cells of mammals. Journal of Evol Biochemistry and Physiology 16(5):81–87
Khodjakov A, Rieder C, Mannella CA, Kinnally KW (2004) Laser micro-irradiation of mitochondria: is there an amplified mitochondrial death signal in neural cells? Mitochondrion 3(4):217–227. https://doi.org/10.1016/j.mito.2003.10.002
Article CAS PubMed Google Scholar
Kinoshita PF, Yshii LM, Vasconcelos AR, Orellana AMM, Lima LDS, Davel APC, Rossoni LV, Kawamoto EM, Scavone C (2014) Signaling function of Na,K-ATPase induced by ouabain against LPS as an inflammation model in hippocampus. J Neuroinflammation 11:218. https://doi.org/10.1186/s12974-014-0218-z
Klimanova EA, Petrushanko IY, Mitkevich VA, Anashkina AA, Orlov SN, Makarov AA, Lopina OD (2015) Binding of ouabain and marinobufagenin leads to different structural changes in Na, K-ATPase and depends on the enzyme conformation. FEBS Letters 589(19PartB):2668–2674. https://doi.org/10.1016/j.febslet.2015.08.011
Article CAS PubMed Google Scholar
Kometiani Z (2007) Kinetic analysis of multi-sited enzyme systems. Pub House Sakartvelos matsne Tbilisi, Georgia. https://doi.org/10.52340/9789994066308
Liu L, Ivanov AV, Gable ME, Jolivel F, Morrill GA, Askari A (2011) Comparative Properties of Caveolar and Noncaveolar Preparations of Kidney Na+/K+-ATPase. Biochemistry 50(40):8664–8673. https://doi.org/10.1021/bi2009008
留言 (0)