A matter of new life and cell death: programmed cell death in the mammalian ovary

Raff MC. Social controls on cell survival and cell death. Nature. 1992;356(6368):397–400.

Article  CAS  PubMed  Google Scholar 

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486–541.

Article  PubMed  PubMed Central  Google Scholar 

Yamaguchi Y, Miura M. Programmed cell death in neurodevelopment. Dev Cell. 2015;32(4):478–90.

Article  CAS  PubMed  Google Scholar 

Jacobsen MD, Weil M, Raff MC. Role of Ced-3/ICE-family proteases in staurosporine-induced programmed cell death. J Cell Biol. 1996;133(5):1041–51.

Article  CAS  PubMed  Google Scholar 

Smith P, Wilhelm D, Rodgers RJ. Development of mammalian ovary. J Endocrinol. 2014;221(3):R145–61.

Article  CAS  PubMed  Google Scholar 

Niu W, Spradling AC. Mouse oocytes develop in cysts with the help of nurse cells. Cell. 2022;185(14):2576–90.e12.

Article  CAS  PubMed  Google Scholar 

Borum K. Oogenesis in the mouse. A study of the meiotic prophase. Exp Cell Res. 1961;24:495–507.

Article  CAS  PubMed  Google Scholar 

Jaffe LA, Egbert JR. Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu Rev Physiol. 2017;79:237–60.

Article  CAS  PubMed  Google Scholar 

Sarraj MA, Drummond AE. Mammalian foetal ovarian development: consequences for health and disease. Reproduction. 2012;143(2):151–63.

Article  CAS  PubMed  Google Scholar 

Sawyer HR, Smith P, Heath DA, Juengel JL, Wakefield SJ, McNatty KP. Formation of ovarian follicles during fetal development in sheep. Biol Reprod. 2002;66(4):1134–50.

Article  CAS  PubMed  Google Scholar 

Pepling ME. From primordial germ cell to primordial follicle: mammalian female germ cell development. Genesis. 2006;44(12):622–32.

Article  CAS  PubMed  Google Scholar 

Hutt KJ, McLaughlin EA, Holland MK. Primordial follicle activation and follicular development in the juvenile rabbit ovary. Cell Tissue Res. 2006;326(3):809–22.

Article  PubMed  Google Scholar 

Kerr JB, Myers M, Anderson RA. The dynamics of the primordial follicle reserve. Reproduction. 2013;146(6):R205–15.

Article  CAS  PubMed  Google Scholar 

Hoffman BL, Schorge JO, Halvorson LM, Hamid CA, Corton MM, Schaffer JI. Williams gynecology. 4th ed. New York: McGraw-Hill Education LLC; 2020.

Google Scholar 

White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18(3):413–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma D, Bhartiya D. Stem cells in adult mice ovaries form germ cell nests, undergo meiosis, neo-oogenesis and follicle assembly on regular basis during estrus cycle. Stem Cell Rev Rep. 2021;17(5):1695–711.

Article  CAS  PubMed  Google Scholar 

McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21(2):200–14.

CAS  PubMed  Google Scholar 

Kim J, You YJ. Oocyte quiescence: from formation to awakening. Endocrinology. 2022;163(6):1–9.

Article  Google Scholar 

Hirshfield AN. Development of follicles in the mammalian ovary. Int Rev Cytol. 1991;124:43–101.

Article  CAS  PubMed  Google Scholar 

Kidder GM. Roles of gap junctions in ovarian folliculogenesis: implications for female infertility. In: Winterhager E, editor. Gap junctions in development and disease. Berlin: Springer; 2005. p. 223–37.

Chapter  Google Scholar 

Oktay K, Briggs D, Gosden RG. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab. 1997;82(11):3748–51.

CAS  PubMed  Google Scholar 

Orisaka M, Miyazaki Y, Shirafuji A, Tamamura C, Tsuyoshi H, Tsang BK, et al. The role of pituitary gonadotropins and intraovarian regulators in follicle development: a mini-review. Reprod Med Biol. 2021;20(2):169–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeleznik AJ. The physiology of follicle selection. Reprod Biol Endocrinol. 2004;2:31.

Article  PubMed  PubMed Central  Google Scholar 

Sanders JR, Jones KT. Regulation of the meiotic divisions of mammalian oocytes and eggs. Biochem Soc Trans. 2018;46(4):797–806.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richards JS, Russell DL, Robker RL, Dajee M, Alliston TN. Molecular mechanisms of ovulation and luteinization. Mol Cell Endocrinol. 1998;145(1–2):47–54.

Article  CAS  PubMed  Google Scholar 

Bowen-Shauver JM, Gibori G. The corpus luteum of pregnancy. In: Leung PCK, Adashi EY, editors. The ovary. 2nd ed. San Diego: Academic; 2004. p. 201–30.

Chapter  Google Scholar 

McCracken JA, Custer EE, Lamsa JC. Luteolysis: a neuroendocrine-mediated event. Physiol Rev. 1999;79(2):263–323.

Article  CAS  PubMed  Google Scholar 

Hennebold JD. Corpus luteum. In: Skinner MK, editor. Encyclopedia of reproduction. 2nd ed. Amsterdam: Elsevier; 2018. p. 99–105.

Chapter  Google Scholar 

Zeleznik AJ, Pohl CR. Control of follicular development, corpus luteum function, the maternal recognition of pregnancy, and the neuroendocrine regulation of the menstrual cycle in higher primates. In: Neill JD, editor. Knobil and Neill’s physiology of reproduction. 3rd ed. Boston: Academic; 2006. p. 2449–510.

Chapter  Google Scholar 

Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21(11):678–95.

Article  CAS  PubMed  Google Scholar 

Orrenius S, Nicotera P, Zhivotovsky B. Cell death mechanisms and their implications in toxicology. Toxicol Sci. 2011;119(1):3–19.

Article  CAS  PubMed  Google Scholar 

Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019;50(6):1352–64.

Article  PubMed  PubMed Central  Google Scholar 

Brown-Suedel AN, Bouchier-Hayes L. Caspase-2 substrates: to apoptosis, cell cycle control, and beyond. Front Cell Dev Biol. 2020;8:1–17.

Article  Google Scholar 

Kopeina GS, Zhivotovsky B. Caspase-2 as a master regulator of genomic stability. Trends Cell Biol. 2021;31(9):712–20.

Article  CAS  PubMed  Google Scholar 

Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20(3):175–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB J. 2009;23(6):1625–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94(4):491–501.

Article  CAS  PubMed  Google Scholar 

Pru JK, Tilly JL. Programmed cell death in the ovary: insights and future prospects using genetic technologies. Mol Endocrinol. 2001;15(6):845–53.

Article  CAS  PubMed  Google Scholar 

Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, et al. Molecular definitions of autophagy and related processes. Embo J. 2017;36(13):1811–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khandia R, Dadar M, Munjal A, Dhama K, Karthik K, Tiwari R, et al. A comprehensive review of autophagy and its various roles in infectious, non-infectious, and lifestyle diseases: current knowledge and prospects for disease prevention, novel drug design, and therapy. Cells. 2019;8(7):674.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif