Arias, N., Arboleya, S., Allison, J., Kaliszewska, A., Higarza, S.G., Gueimonde, M., and Arias, J.L., The relationship between choline bioavailability from diet, intestinal microbiota composition, and its modulation of human diseases, Nutrients, 2020, vol. 12, p. e2340. https://doi.org/10.3390/nu12082340
Danne, O. and Möckel, M., Choline in acute coronary syndrome: An emerging biomarker with implications for the integrated assessment of plaque vulnerability, Expert Rev. Mol. Diagn., 2010, vol. 10, pp. 159–171. https://doi.org/10.1586/erm.10.2
Article CAS PubMed Google Scholar
Pan, X.F., Yang, J.J., Shu, X.O., Moore, S.C., Palmer, N.D., Guasch-Ferré, M., Herrington, D.M., Harada, S., Eliassen, H., Wang, T.J., Gerszten, R.E., Albanes, D., Tzoulaki, I., Karaman, I., Elliott, P., Zhu, H., Wagenknecht, L.E., Zheng, W., Cai, H., Cai, Q., Matthews, C.E., Menni, C., Meyer, K.A., Lipworth, L.P., Ose, J., Fornage M, Ulrich, C.M, and Yu, D., Associations of circulating choline and its related metabolites with cardiometabolic biomarkers: An international pooled analysis, Am. J. Clin. Nutr., 2021, vol. 114, pp. 893–906. https://doi.org/10.1093/ajcn/nqab152
Article CAS PubMed PubMed Central Google Scholar
Wu, G., Zhang, L., Li, T., Zuniga, A., Lo-paschuk, G.D., Li, L., Jacobs, R.L., and Vance, D.E., Choline supplementation promotes hepatic insulin resistance in phosphatidylethanolamine N-methyltransferase-deficient mice via increased glucagon action, J. Biol. Chem., 2013, vol. 288, pp. 837–847. https://doi.org/10.1074/jbc.M112.415117
Article CAS PubMed Google Scholar
Dibaba, D.T., Johnson, K.C., Kucharska-New-ton A.M., Meyer, K., Zeisel, S.H., and Bidulescu, A., The association of dietary choline and betaine with the risk of type 2 diabetes: The atherosclerosis risk in communities (ARIC) study, Diabetes Care, 2020, vol. 43, pp. 2840–2846. https://doi.org/10.2337/dc20-0733
Article CAS PubMed PubMed Central Google Scholar
Van Wijk, N., Watkins, C., Böhlke, M., Maher, T., Hageman, R., Kamphuis, P., and Wurtman, R., Plasma choline concentration varies with different dietary levels of vitamins B6, B12 and folic acid in rats maintained on choline-adequate diets, Br. J. Nutr., 2012, vol. 107, pp. 1408–1412. https://doi.org/10.1017/S0007114511004570
Article CAS PubMed Google Scholar
Siddiqui, A., Shah, Z., Jahan, R.N., Othman, I., and Kumari, Y., Mechanistic role of boswellic acids in Alzheimer’s disease: Emphasis on anti-inflammatory properties, Biomed. Pharmacother., 2021, vol. 144, p. 112250. https://doi.org/10.1016/J.BIOPHA.2021.112250
Article CAS PubMed Google Scholar
Colovic, M.B., Krstic, D.Z., Lazarevic-Pasti, T.D., Bondzic, A.M., and Vasic, V.M., Acetylcholinesterase inhibitors: Pharmacology and toxicology, Curr. Neuropharmacol., 2013, vol. 11, pp. 315–335. https://doi.org/10.2174/1570159x11311030006
Article CAS PubMed PubMed Central Google Scholar
Mujica, M., Lewis, E., Jacobs, R., Letourneau, N., Bell, R., Field, C., and Lamers, Y., Plasma free choline concentration did not reflect dietary choline intake in early and late pregnancy: Findings from the APrON study, Curr. Dev. Nutr., 2020, vol. 29, p. 1825. https://doi.org/10.1093/cdn/nzaa067_052
Choline—Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. https://www. ncbi.nlm.nih.gov/books/NBK114308/. Cited October 2, 2023.
Holm, P.I., Ueland, P.M., Kvalheim, G., and Lien, E.A., Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry, Clin. Chem., 2003, vol. 49, pp. 286–294. https://doi.org/10.1373/49.2.286
Article CAS PubMed Google Scholar
Acara, M., Rennick, B., LaGraff, S., and Schroeder, E.T., Effect of renal transplantation on the levels of choline in the plasma of uremic humans, Nephron, 1983, vol. 35, pp. 241–243. https://doi.org/10.1159/000183089
Article CAS PubMed Google Scholar
Mlodzik-Czyzewska, M.A., Malinowska, A.M., Szwengiel, A., and Chmurzynska, A., Associations of plasma betaine, plasma choline, choline intake, and MTHFR polymorphism (rs1801133) with anthropometric parameters of healthy adults are sex-dependent, J. Hum. Nutr. Diet, 2002, vol. 35, pp. 701–712. https://doi.org/10.1111/jhn.13046
Konstantinova, S.V., Tell, G.S., Vollset, S.E., Nygård, O., Bleie, Ø, and Ueland, P.M., Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women, J. Nutr., 2008, vol. 138, pp. 914–920. https://doi.org/10.1093/jn/138.5.914
Article CAS PubMed Google Scholar
Li, Z., Agellon, L.B., and Vance, D.E., Choline redistribution during adaptation to choline deprivation, J. Biol. Chem., 2007, vol. 282, pp. 10283–10289. https://doi.org/10.1074/jbc.M611726200
Article CAS PubMed Google Scholar
Zeisel, S.H., Phosphatidylcholine: Endogenous precursor of choline, in Lecithin, Boston: Springer, 1987, pp. 107–120.
Hirabayashi, T., Kawaguchi, M., Harada, S., Mouri, M., Takamiya, R., Miki, Y., Sato, H., Taketomi, Y., Yokoyama, K., Kobayashi, T., Toku-oka, S.M., Kita, Y., Yoda, E., Hara, S., Mikami, K., Nishito, Y., Kikuchi, N., Nakata, R., Kaneko, M., and Murakami, M., Hepatic phosphatidylcholine catabolism driven by PNPLA7 and PNPLA8 supplies endogenous choline to replenish the methionine cycle with methyl groups, Cell Rep., 2023, vol. 42, p. 111940. https://doi.org/10.1016/j.celrep.2022.111940
Article CAS PubMed Google Scholar
Harada, S., Taketomi, Y., Aiba, T., Kawaguchi, M., Hirabayashi, T., Uranbileg, B., Kurano, M., Yatomi, Y., and Murakami, M., The lysophospholipase PNPLA7 controls hepatic choline and methionine metabolism, Biomolecules, 2023, vol. 13, p. 471. https://doi.org/10.3390/biom13030471
Article CAS PubMed PubMed Central Google Scholar
General Pharmacopoeial Monograph Validation of Analytical Methods. OFS.1.1.0012.15, State Pharmacopoeia of the Russian Federation, 13th ed., vol. 1, Guideline on Bioanalytical Method Validation, EMEA/CHMP/ EWP192217/2009, 2011.
Decision of the EEC Council no. 85 “Rules for Conducting Bioequivalence Studies of Medicinal Products within the Framework of the Eurasian Economic Union” dated November 3, 2016.
Unguryanu, T.N. and Grzhibovskii, A.M., Comparing three or more independent groups using the nonparametric Kruskal–Wallis test in stata program, Ekol. Chel., 2014, vol. 6, pp. 55–58.
Yue, B., Pattison, E., Roberts, W.L., Rockwood, A.L., Danne, O., Lueders, C., and Möckel, M., Choline in whole blood and plasma: Sample preparation and stability, Clin. Chem., 2008, vol. 54, pp. 590–593. https://doi.org/10.1373/clinchem.2007.094201
Article CAS PubMed Google Scholar
Sotelo-Orozco, J., Chen, S.-Y., Hertz-Picciotto, I., and Slupsky, C.M., A comparison of serum and plasma blood collection tubes for the integration of epidemiological and metabolomics data, Front. Mol. Biosci., 2021, vol. 8, p. 682134, https://doi.org/10.3389/fmolb.2021.682134
Article CAS PubMed PubMed Central Google Scholar
Rennick, B., Acara, M., Hysert, P., and Mookerjee, B., Choline loss during hemodialysis: Homeostatic control of plasma choline concentrations, Kidney Int., 1976, vol. 10, pp. 329–335. https://doi.org/10.1038/ki.1976.116
Article CAS PubMed Google Scholar
Guo, F., Dai, Q., Zeng, X., Liu, Y., Tan, Z., Zhang, H., and Ouyang, D., Renal function is associated with plasma trimethylamine-N-oxide, choline, L-carnitine and betaine: A pilot study, Int. Urol. Nephrol., 2020, vol. 53, pp. 539–551. https://doi.org/10.1007/s11255-020-02632-6
Article CAS PubMed Google Scholar
Ilcol, Y.O., Dilek, K., Yurtkuran, M., and Ulus, I.H., Changes of plasma free choline and choline-containing compounds’ concentrations and choline loss during hemodialysis in ESRD patients, Clin. Biochem., 2002, vol. 35, pp. 233–239. https://doi.org/10.1016/s0009-9120(02)00298-9
Article CAS PubMed Google Scholar
Ragi, N., Pallerla, P., Babi Reddy Gari, A.R., Lingampelly, S.S., Ketavarapu, V., Addipilli, R., Chirra, N., Kantevari, S., Yadla, M., and Sripadi, P., Assessment of uremic toxins in advanced chronic kidney disease patients on maintenance hemodialysis by LC-ESI-MS/MS, Metabolomics, 2023, vol. 19, p. 14. https://doi.org/10.1007/s11306-023-01978-z
Article CAS PubMed Google Scholar
Yamaguchi, Y., Zampino, M., Moaddel, R., Chen, T.K., Tian, Q., Ferrucci, L., and Semba, R.D., Plasma metabolites associated with chronic kidney disease and renal function in adults from the Baltimore Longitudinal Study of Aging, Metabolomics, 2021, vol. 17, p. 9. https://doi.org/10.1007/s11306-020-01762-3
Article CAS PubMed PubMed Central Google Scholar
Cho, C.E., Aardema, N.D.J., Bunnell, M.L., Larson, D.P., Aguilar, S.S., Bergeson, J.R., Malysheva, O.V., Caudill, M.A., and Lefevre, M., Effect of choline forms and gut microbiota composition on trimethylamine-N-oxide response in healthy men, Nutrients, 2020, vol. 12, p. 2220. https://doi.org/10.3390/nu12082220
Article CAS PubMed PubMed Central Google Scholar
Mafra, D., Cardozo, L., Ribeiro-Alves, M., Bergmane, P., Shiels, P.G., and Stenvinkel, P., Short report: Choline plasma levels are related to Nrf2 transcriptional expression in chronic kidney disease?, Clin. Nutr., 2022, vol. 50, pp. 318–321. https://doi.org/10.1016/j.clnesp.2022.06.008
Świątkiewicz, M. and Grieb, P., Citicoline for supporting memory in aging humans, Aging Dis., 2023, vol. 14, pp. 1184–1195. https://doi.org/10.14336/AD.2022.0913
Barnes, M., McAfee, A., Bonham, M., McSorley, E., Wallace, J., Myers, G., and Strain, J., Age and sex differences in plasma homocysteine, choline and betaine status in Seychellois children and young adults, Proc. Nutr. Soc., 2010, vol. 69, p. E381. https://doi.org/10.1017/S0029665110002429
Roe, A.J., Zhang, S., Bhadelia, R.A., Johnson, E.J., Lichtenstein, A.H., Rogers, G.T., Rosenberg, I.H., Smith, C.E., Zeisel, S.H., and Scott, T.M., Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults, Am. J. Clin. Nutr., 2017, vol. 105, pp. 1283–1290. https://doi.org/10.3945/ajcn.116.137158
Nurk, E., Refsum, H., Bjelland, I., Drevon, C.A., Tell, G.S., Ueland, P.M., Vollset, S.E., Engedal, K., Nygaard, H.A., and Smith, D.A., Plasma free choline, betaine and cognitive performance: The Hordaland Health Study, Br. J. Nutr., 2013, vol. 109, pp. 511–519. https://doi.org/10.1017/S0007114512001249
Article CAS PubMed Google Scholar
Sharma, H.S., Blood-brain barrier in Alzheimers disease induced brain pathology and neuroprotection by nanodelivery of cerebrolysin, Neurosci. Neuropharmacol., 2017, vol. 3, no. 2 (suppl.), p. 26. https://doi.org/10.4172/2469-9780-c1-004
Bakker, C., van Esdonk, M.J., Stuurman, R.F.E., Borghans, L.G.J.M., de Kam, M.L., van Gerven, J.M.A., and Groeneveld, G.J., Biperiden challenge model in healthy elderly as proof-of-pharmacology tool: A randomized, placebo-controlled trial, J. Clin. Pharmacol., 2021, vol. 61, pp. 1466–1478. https://doi.org/10.1002/jcph.1913
留言 (0)