Causal effects of sleep traits on metabolic syndrome and its components: a Mendelian randomization study

Eckel RH, Alberti K, Grundy SM, Zimmet PZ (2010) The metabolic syndrome. Lancet 375:181–183. https://doi.org/10.1016/S0140-6736(09)61794-3

Article  PubMed  Google Scholar 

Pammer LM, Lamina C, Schultheiss UT et al (2021) Association of the metabolic syndrome with mortality and major adverse cardiac events: a large chronic kidney disease cohort. J Intern Med 290:1219–1232. https://doi.org/10.1111/joim.13355

Article  CAS  PubMed  Google Scholar 

Saklayen MG (2018) The global epidemic of the metabolic syndrome. Curr Hypertens Rep 20:12. https://doi.org/10.1007/s11906-018-0812-z

Article  PubMed  PubMed Central  Google Scholar 

Hirode G, Wong RJ (2020) Trends in the prevalence of metabolic syndrome in the United States, 2011–2016. JAMA 323:2526. https://doi.org/10.1001/jama.2020.4501

Article  PubMed  PubMed Central  Google Scholar 

Jia Y, Guo D, Sun L et al (2022) Self-reported daytime napping, daytime sleepiness, and other sleep phenotypes in the development of cardiometabolic diseases: a Mendelian randomization study. Eur J Prev Cardiol 29:1982–1991. https://doi.org/10.1093/eurjpc/zwac123

Article  PubMed  Google Scholar 

Sun J, Ma C, Zhao M et al (2022) Daytime napping and cardiovascular risk factors, cardiovascular disease, and mortality: a systematic review. Sleep Med Rev 65:101682. https://doi.org/10.1016/j.smrv.2022.101682

Article  PubMed  Google Scholar 

Che T, Yan C, Tian D et al (2021) The association between sleep and metabolic syndrome: a systematic review and meta-analysis. Front Endocrinol 12:773646. https://doi.org/10.3389/fendo.2021.773646

Article  Google Scholar 

Deng H-B, Tam T, Zee BC-Y et al (2017) Short sleep duration increases metabolic impact in healthy adults: a population-based cohort study. Sleep 40:zsx130. https://doi.org/10.1093/sleep/zsx130

Article  Google Scholar 

Garbarino S, Magnavita N (2019) Sleep problems are a strong predictor of stress-related metabolic changes in police officers. A prospective study. PLoS ONE 14:e0224259. https://doi.org/10.1371/journal.pone.0224259

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu JH, Yun C-H, Ahn JH et al (2015) Evening chronotype is associated with metabolic disorders and body composition in middle-aged adults. J Clin Endocrinol Metab 100:1494–1502. https://doi.org/10.1210/jc.2014-3754

Article  CAS  PubMed  Google Scholar 

Vizmanos B, Cascales AI, Rodríguez-Martín M et al (2023) Lifestyle mediators of associations among siestas, obesity, and metabolic health. Obes Silver Spring Md 31:1227–1239. https://doi.org/10.1002/oby.23765

Article  CAS  Google Scholar 

Choi S, Kim K, Lee JK et al (2019) Association between change in alcohol consumption and metabolic syndrome: analysis from the health examinees study. Diabetes Metab J 43:615–626. https://doi.org/10.4093/dmj.2018.0128

Article  PubMed  PubMed Central  Google Scholar 

Yao F, Bo Y, Zhao L et al (2021) Prevalence and influencing factors of metabolic syndrome among adults in China from 2015 to 2017. Nutrients 13:4475. https://doi.org/10.3390/nu13124475

Article  PubMed  PubMed Central  Google Scholar 

Wen L, Fan J, Shi X, et al (2024) Causal association of rheumatoid arthritis with frailty and the mediation role of inflammatory cytokines: a Mendelian randomization study. Arch Gerontol Geriatr 105348. https://doi.org/10.1016/j.archger.2024.105348

Dashti HS, Daghlas I, Lane JM et al (2021) Genetic determinants of daytime napping and effects on cardiometabolic health. Nat Commun 12:900. https://doi.org/10.1038/s41467-020-20585-3

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Dashti HS, Jones SE, Wood AR et al (2019) Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat Commun 10:1100. https://doi.org/10.1038/s41467-019-08917-4

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Jansen PR, Watanabe K, Stringer S et al (2019) Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat Genet 51:394–403. https://doi.org/10.1038/s41588-018-0333-3

Article  CAS  PubMed  Google Scholar 

Jones SE, Lane JM, Wood AR et al (2019) Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat Commun 10:343. https://doi.org/10.1038/s41467-018-08259-7

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Lind L (2019) Genome-wide association study of the metabolic syndrome in UK Biobank. Metab Syndr Relat Disord 17:505–511. https://doi.org/10.1089/met.2019.0070

Article  CAS  PubMed  Google Scholar 

Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285:2486–2497. https://doi.org/10.1001/jama.285.19.2486

Article  Google Scholar 

Burgess S, Davies NM, Thompson SG (2016) Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol 40:597–608. https://doi.org/10.1002/gepi.21998

Article  PubMed  PubMed Central  Google Scholar 

van Walree ES, Jansen IE, Bell NY et al (2022) Disentangling genetic risks for metabolic syndrome. Diabetes 71:2447–2457. https://doi.org/10.2337/db22-0478

Article  CAS  PubMed  Google Scholar 

Shungin D, Winkler TW, Croteau-Chonka DC et al (2015) New genetic loci link adipose and insulin biology to body fat distribution. Nature 518:187–196. https://doi.org/10.1038/nature14132

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurki MI, Karjalainen J, Palta P et al (2023) FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613:508–518. https://doi.org/10.1038/s41586-022-05473-8

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Willer CJ, Schmidt EM, Sengupta S et al (2013) Discovery and refinement of loci associated with lipid levels. Nat Genet 45:1274–1283. https://doi.org/10.1038/ng.2797

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Spracklen CN, Marenne G et al (2021) The trans-ancestral genomic architecture of glycemic traits. Nat Genet 53:840–860. https://doi.org/10.1038/s41588-021-00852-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu M, Jiang Y, Wedow R et al (2019) Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 51:237–244. https://doi.org/10.1038/s41588-018-0307-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yengo L, Sidorenko J, Kemper KE et al (2018) Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet 27:3641–3649. https://doi.org/10.1093/hmg/ddy271

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37:658–665. https://doi.org/10.1002/gepi.21758

Article  PubMed  PubMed Central  Google Scholar 

Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–525. https://doi.org/10.1093/ije/dyv080

Article  PubMed  PubMed Central  Google Scholar 

Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40:304–314. https://doi.org/10.1002/gepi.21965

Article  PubMed  PubMed Central  Google Scholar 

Verbanck M, Chen C-Y, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50:693–698. https://doi.org/10.1038/s41588-018-0099-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tse LA, Wang C, Rangarajan S et al (2021) Timing and length of nocturnal sleep and daytime napping and associations with obesity types in high-, middle-, and low-income countries. JAMA Netw Open 4:e2113775. https://doi.org/10.1001/jamanetworkopen.2021.13775

Article  PubMed  PubMed Central  Google Scholar 

Cai H, Su N, Li W et al (2021) Relationship between afternoon napping and cognitive function in the ageing Chinese population. Gen Psychiatry 34:e100361. https://doi.org/10.1136/gpsych-2020-100361

Article 

留言 (0)

沒有登入
gif