The Ribonuclease ZC3H12A is required for self-inflicted DNA breaks after DNA damage in small cell lung cancer cells

W.J. Petty, L. Paz-Ares, Emerging strategies for the treatment of small cell lung cancer: a review. JAMA Oncol. 9(3), 419–429 (2023)

Article  PubMed  Google Scholar 

Z. Megyesfalvi, et al., Clinical insights into small cell lung cancer: tumor heterogeneity, diagnosis, therapy, and future directions. CA Cancer J. Clin. 73(6), 620–652 (2023)

Article  PubMed  Google Scholar 

R.-X. Huang, P.-K. Zhou, DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct. Target Ther. 5(1), 60 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

T.D. Halazonetis, V.G. Gorgoulis, J. Bartek, An oncogene-induced DNA damage model for cancer development. Science (New York, N.Y.) 319(5868), 1352–1355 (2008)

Article  ADS  CAS  PubMed  Google Scholar 

T. Soussi, C. Béroud, Assessing TP53 status in human tumours to evaluate clinical outcome. Nat. Rev. Cancer 1(3), 233–240 (2001)

Article  CAS  PubMed  Google Scholar 

H. Zhao, et al., Targeted inhibition of the E3 ligase SCFSkp2/Cks1 has antitumor activity in RB1-deficient human and mouse small-cell lung cancer. Cancer Res. 80(11), 2355–2367 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.T. Dillon, J.S. Good, K.J. Harrington, Selective targeting of the G2/M cell cycle checkpoint to improve the therapeutic index of radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 26(5), 257–265 (2014)

Article  CAS  PubMed  Google Scholar 

A. Cieślar-Pobuda, Y. Saenko, J. Rzeszowska-Wolny, PARP-1 inhibition induces a late increase in the level of reactive oxygen species in cells after ionizing radiation. Mutat. Res. 732(1-2), 9–15 (2012)

Article  PubMed  Google Scholar 

R. Musson, W. Szukała, J. Jura, MCPIP1 RNase and its multifaceted role. Int. J. Mol. Sci. 21(19), 7183 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Xu, et al., MCP-1-induced protein-1, an immune regulator. Protein Cell 3(12), 903–910 (2012)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Fu, P.J. Blackshear, RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat. Rev. Immunol. 17(2), 130–143 (2017)

Article  CAS  PubMed  Google Scholar 

T. Mino, et al., Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161(5), 1058–1073 (2015)

Article  CAS  PubMed  Google Scholar 

K. Matsushita, et al., Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458(7242), 1185–1190 (2009)

Article  ADS  CAS  PubMed  Google Scholar 

K. Miekus, et al., Activity of MCPIP1 RNase in tumor associated processes. J. Exp. Clin. Cancer Res. 38(1), 421 (2019)

Article  PubMed  PubMed Central  Google Scholar 

J. Liang, et al., MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J. Exp. Med. 207(13), 2959–2973 (2010)

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Niu, et al., USP10 inhibits genotoxic NF-κB activation by MCPIP1-facilitated deubiquitination of NEMO. EMBO J. 32(24), 3206–3219 (2013)

Article  CAS  PubMed  PubMed Central  Google Scholar 

R. Xu, et al., How are MCPIP1 and cytokines mutually regulated in cancer-related immunity? Protein Cell 11(12), 881–893 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

P.L. Olive, J.P. Banáth, The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1(1), 23–29 (2006)

Article  CAS  PubMed  Google Scholar 

Y.W. Jun, et al., An excimer clamp for measuring damaged-base excision by the DNA repair enzyme NTH1. Angew. Chem. Int. Ed. Engl. 59(19), 7450–7455 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

B.L. Carroll, et al., Caught in motion: human NTHL1 undergoes interdomain rearrangement necessary for catalysis. Nucleic Acids Res. 49(22), 13165–13178 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

K.L. Limpose, et al., Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer. Nucleic Acids Res. 46(9), 4515–4532 (2018)

Article  CAS  PubMed  PubMed Central  Google Scholar 

A. Ray Chaudhuri, et al., Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535(7612), 382–387 (2016)

Article  ADS  PubMed  Google Scholar 

J. Wu, L.Y. Lu, X. Yu, The role of BRCA1 in DNA damage response. Protein Cell 1(2), 117–123 (2010)

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif