Competence for neural crest induction is controlled by hydrostatic pressure through Yap

Gilbert, S. F. The Developmental Mechanics of Cell Specification (Sinauer Associates, 2000).

Keller, G. M. In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862–869 (1995).

Article  CAS  PubMed  Google Scholar 

Gurdon, J. B. Embryonic induction—molecular prospects. Development 99, 285–306 (1987).

Article  CAS  PubMed  Google Scholar 

Waddington, C. H. Experiments on embryonic induction. J. Exp. Biol. 11, 218–223 (1934).

Article  Google Scholar 

Spemann, H. Über Korrelationen in der Entwicklung des Auges. Verh. Anat. Ges. 15, 61–79 (1901).

Google Scholar 

Surani, M. A., Hayashi, K. & Hajkova, P. Genetic and epigenetic regulators of pluripotency. Cell 128, 747–762 (2007).

Article  CAS  PubMed  Google Scholar 

Esmaeili, M. et al. Chromatin accessibility and histone acetylation in the regulation of competence in early development. Dev. Biol. 462, 20–35 (2020).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Steinbach, O. C., Wolffe, A. P. & Rupp, R. A. W. Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature 389, 395–399 (1997).

Article  ADS  CAS  PubMed  Google Scholar 

Gillespie, L. L., Paterno, G. D. & Slack, J. M. Analysis of competence: receptors for fibroblast growth factor in early Xenopus embryos. Development 106, 203–208 (1989).

Article  CAS  PubMed  Google Scholar 

Mayor, R., Morgan, R. & Sargent, M. G. Induction of the prospective neural crest of Xenopus. Development 121, 767–777 (1995).

Article  CAS  PubMed  Google Scholar 

Mancilla, A. & Mayor, R. Neural crest formation in Xenopus laevis: mechanisms of Xslug induction. Dev. Biol. 177, 580–589 (1996).

Article  CAS  PubMed  Google Scholar 

Szabó, A. & Mayor, R. Mechanisms of neural crest migration. Annu. Rev. Genet. 52, 43–63 (2018).

Article  PubMed  Google Scholar 

LaBonne, C. & Bronner-Fraser, M. Neural crest induction in Xenopus: evidence for a two-signal model. Development 125, 2403–2414 (1998).

Article  CAS  PubMed  Google Scholar 

Garcı́a-Castro, M. I., Marcelle, C. & Bronner-Fraser, M. Ectodermal Wnt function as a neural crest inducer. Science 297, 848–851 (2002).

Article  ADS  PubMed  Google Scholar 

Faber, J. & Nieuwkoop, P. D. (eds.) In Normal Table of Xenopus Laevis (Daudin). A Systematical and Chronological Survey of the Development from the Fertilized Egg till the end of Metamorphosis 243–246 (1956).

Steventon, B., Araya, C., Linker, C., Kuriyama, S. & Mayor, R. Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction. Development 136, 771–779 (2009).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kelsh, R. N., Dutton, K., Medlin, J. & Eisen, J. S. Expression of zebrafish fkd6 in neural crest-derived glia. Mech. Dev. 93, 161–164 (2000).

Article  CAS  PubMed  Google Scholar 

Keller, R. E. Vital dye mapping of the gastrula and neurula of Xenopus laevis. Dev. Biol. 42, 222–241 (1975).

Article  CAS  PubMed  Google Scholar 

Chan, C. J. & Hiiragi, T. Integration of luminal pressure and signalling in tissue self-organization. Development 147, dev181297 (2020).

Article  CAS  PubMed  Google Scholar 

Wu, M. Y., Ramel, M. C., Howell, M. & Hill, C. S. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. PLoS Biol. 9, e1000593 (2011).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Slack, C. & Warner, A. E. Intracellular and intercellular potentials in the early amphibian embryo. J. Physiol. 232, 313–330 (1973).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Pla, P. & Monsoro-Burq, A. H. The neural border: induction, specification and maturation of the territory that generates neural crest cells. Dev. Biol. 444, S36–S46 (2018).

Article  CAS  PubMed  Google Scholar 

Veeman, M. T., Slusarski, D. C., Kaykas, A., Louie, S. H. & Moon, R. T. Zebrafish Prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol. 13, 680–685 (2003).

Article  CAS  PubMed  Google Scholar 

Tran, H. T. & Vleminckx, K. Design and use of transgenic reporter strains for detecting activity of signaling pathways in Xenopus. Methods 66, 422–432 (2014).

Article  CAS  PubMed  Google Scholar 

Azzolin, L. et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 158, 157–170 (2014).

Article  CAS  PubMed  Google Scholar 

Barry, E. R. et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493, 106–110 (2013).

Article  ADS  PubMed  Google Scholar 

Park, H. W. et al. Alternative wnt signaling activates YAP/TAZ. Cell 162, 780–794 (2015).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Gee, S. T., Milgram, S. L., Kramer, K. L., Conlon, F. L. & Moody, S. A. Yes-Associated Protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone. PLoS ONE 6, e20309 (2011).

Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

Carmona-Fontaine, C., Acuña, G., Ellwanger, K., Niehrs, C. & Mayor, R. Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm. Dev. Biol. 309, 208–221 (2007).

Article  CAS  PubMed  Google Scholar 

Panciera, T., Azzolin, L., Cordenonsi, M. & Piccolo, S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18, 758–770 (2017).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Gao, J. et al. Cell contact and pressure control of YAP localization and clustering revealed by super-resolution imaging. Nanoscale 9, 16993–17003 (2017).

Article  CAS  PubMed  Google Scholar 

Varelas, X. et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β–SMAD pathway. Dev. Cell 19, 831–844 (2010).

Article  CAS  PubMed  Google Scholar 

Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).

Article  CAS  PubMed  Google Scholar 

Leung, A. W. et al. WNT/β-catenin signaling mediates human neural crest induction via a pre-neural border intermediate. Development 143, 398–410 (2016).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Komuro, A., Nagai, M., Navin, N. E. & Sudol, M. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J. Biol. Chem. 278, 33334–33341 (2003).

Article  CAS  PubMed  Google Scholar 

Phelps, G. B., Amsterdam, A., Hagen, H. R., García, N. Z. & Lees, J. A. MITF deficiency and oncogenic GNAQ each promote proliferation programs in zebrafish melanocyte lineage cells. Pigment Cell Melanoma Res. 35, 539–547 (2022).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Haremaki, T. et al. Self-organizing neuruloids model developmental aspects of Huntington’s disease in the ectodermal compartment. Nat. Biotechnol. 37, 1198–1208 (2019).

Article  CAS  PubMed  Google Scholar 

Bagnat, M., Daga, B. & Di Talia, S. Morphogenetic roles of hydrostatic pressure in animal development. Annu. Rev. Cell Dev. Biol. 38, 375–394 (2022).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Biswas, R. et al. Mechanical instability of adherens junctions overrides intrinsic quiescence of hair follicle stem cells. Dev. Cell 56, 761–780.e7 (2021).

留言 (0)

沒有登入
gif