Reduction of [68Ga]Ga-DOTA-TATE injected activity for digital PET/MR in comparison with analogue PET/CT

Deppen SA, Liu E, Blume JD, Clanton J, Shi C, Jones-Jackson LB, et al. Safety and efficacy of 68Ga-DOTATATE PET/CT for diagnosis, staging, and treatment management of neuroendocrine tumors. J Nucl Med. 2016;57(5):708–14.

Article  CAS  PubMed  Google Scholar 

Hofman MS, Kong G, Neels OC, Eu P, Hong E, Hicks RJ. High management impact of Ga-68 DOTATATE (GaTate) PET/CT for imaging neuroendocrine and other somatostatin expressing tumours. J Med Imaging Radiat Oncol. 2012;56(1):40–7.

Article  PubMed  Google Scholar 

Mayerhoefer ME, Prosch H, Beer L, Tamandl D, Beyer T, Hoeller C, et al. PET/MRI versus PET/CT in oncology: a prospective single-center study of 330 examinations focusing on implications for patient management and cost considerations. Eur J Nucl Med Mol Imaging. 2020;47(1):51–60.

Article  CAS  PubMed  Google Scholar 

Alshammari A. Impact of integrated whole body 68Ga PET/MR imaging in comparison with 68Ga PET/CT in Lesions detection and diagnosis of suspected neuroendocrine tumours. Am J Intern Med. 2019;7(4):102–11.

Google Scholar 

Sawicki LM, Deuschl C, Beiderwellen K, Ruhlmann V, Poeppel TD, Heusch P, et al. Evaluation of (68)Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with (68)Ga-DOTATOC PET/CT. Eur Radiol. 2017;27(10):4091–9.

Article  PubMed  Google Scholar 

Jawlakh H, Velikyan I, Welin S, Sundin A. (68) Ga-DOTATOC-PET/MRI and (11) C-5-HTP-PET/MRI are superior to (68) Ga-DOTATOC-PET/CT for neuroendocrine tumour imaging. J Neuroendocrinol. 2021;33(6):e12981.

Article  CAS  PubMed  Google Scholar 

Rajamohan N, Khasawneh H, Singh A, Suman G, Johnson GB, Majumder S, et al. PET/CT and PET/MRI in neuroendocrine neoplasms. Abdom Radiol (NY). 2022;47(12):4058–72.

Article  PubMed  Google Scholar 

Hope TA, Pampaloni MH, Nakakura E, VanBrocklin H, Slater J, Jivan S, et al. Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor. Abdom Imaging. 2015;40(6):1432–40.

Article  PubMed  Google Scholar 

Beiderwellen KJ, Poeppel TD, Hartung-Knemeyer V, Buchbender C, Kuehl H, Bockisch A, et al. Simultaneous 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic neuroendocrine tumors: initial results. Invest Radiol. 2013;48(5):273–9.

Article  CAS  PubMed  Google Scholar 

Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis. J Nucl Med. 2012;53(6):928–38.

Article  PubMed  Google Scholar 

Minamimoto R, Iagaru A, Jamali M, Holley D, Barkhodari A, Vasanawala S, et al. Conspicuity of malignant Lesions on PET/CT and simultaneous time-of-flight PET/MRI. PLoS ONE. 2017;12(1):e0167262.

Article  PubMed  PubMed Central  Google Scholar 

Reiner CS, Stolzmann P, Husmann L, Burger IA, Hüllner MW, Schaefer NG, et al. Protocol requirements and diagnostic value of PET/MR imaging for liver metastasis detection. Eur J Nucl Med Mol Imaging. 2014;41(4):649–58.

Article  PubMed  Google Scholar 

Catana C. Principles of simultaneous PET/MR imaging. Magn Reson Imaging Clin N Am. 2017;25(2):231–43.

Article  PubMed  PubMed Central  Google Scholar 

Schafer JF, Gatidis S, Schmidt H, Guckel B, Bezrukov I, Pfannenberg CA, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273(1):220–31.

Article  PubMed  Google Scholar 

Gatidis S, Schmidt H, Gucke B, Bezrukov I, Seitz G, Ebinger M, et al. Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous (1)(8)F-Fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: a direct comparison to (1)(8)F-fluorodeoxyglucose positron emission tomography/computed tomography. Invest Radiol. 2016;51(1):7–14.

Article  PubMed  Google Scholar 

Martin O, Schaarschmidt BM, Kirchner J, Suntharalingam S, Grueneisen J, Demircioglu A, et al. PET/MRI versus PET/CT for whole-body staging: results from a single-center observational study on 1,003 sequential examinations. J Nucl Med. 2020;61(8):1131–6.

Article  CAS  PubMed  Google Scholar 

Krokos G, MacKewn J, Dunn J, Marsden P. A review of PET attenuation correction methods for PET-MR. EJNMMI Physics. 2023;10(1):52.

Article  PubMed  PubMed Central  Google Scholar 

Catana C. Attenuation correction for human PET/MRI studies. Phys Med Biol. 2020;65(23):23TR02.

Article  PubMed  PubMed Central  Google Scholar 

Ter Voert E, Muehlematter UJ, Delso G, Pizzuto DA, Müller J, Nagel HW, et al. Quantitative performance and optimal regularization parameter in block sequential regularized expectation maximization reconstructions in clinical (68)Ga-PSMA PET/MR. EJNMMI Res. 2018;8(1):70.

Article  PubMed  PubMed Central  Google Scholar 

Tanaka A, Sekine T, Ter Voert E, Zeimpekis KG, Delso G, de Galiza BF, et al. Reproducibility of Standardized Uptake Values Including Volume Metrics Between TOF-PET-MR and TOF-PET-CT. Front Med (Lausanne). 2022;9:796085.

Article  PubMed  Google Scholar 

Davison H, ter Voert EE, de Galiza BF, Veit-Haibach P, Delso G. Incorporation of Time-of-Flight Information Reduces Metal Artifacts in Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging: A Simulation Study. Invest Radiol. 2015;50(7):423–9.

Article  PubMed  Google Scholar 

Mehranian A, Zaidi H. Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction. J Nucl Med. 2015;56(4):635–41.

Article  PubMed  Google Scholar 

Svirydenka H, Delso G, De Galiza BF, Huellner M, Davison H, Fanti S, et al. The Effect of Susceptibility Artifacts Related to Metallic Implants on Adjacent-Lesion Assessment in Simultaneous TOF PET/MR. J Nucl Med. 2017;58(7):1167–73.

Article  CAS  PubMed  Google Scholar 

Vontobel J, Liga R, Possner M, Clerc OF, Mikulicic F, Veit-Haibach P, et al. MR-based attenuation correction for cardiac FDG PET on a hybrid PET/MRI scanner: comparison with standard CT attenuation correction. Eur J Nucl Med Mol Imaging. 2015;42(10):1574–80.

Article  PubMed  Google Scholar 

Zeimpekis KG, Barbosa F, Hullner M, ter Voert E, Davison H, Veit-Haibach P, et al. Clinical evaluation of PET image quality as a function of acquisition time in a new TOF-PET/MRI compared to TOF-PET/CT–initial results. Mol Imaging Biol. 2015;17(5):735–44.

Article  CAS  PubMed  Google Scholar 

Queiroz MA, Delso G, Wollenweber S, Deller T, Zeimpekis K, Huellner M, et al. Dose optimization in TOF-PET/MR compared to TOF-PET/CT. PLoS ONE. 2015;10(7):e0128842.

Article  PubMed  PubMed Central  Google Scholar 

Karlberg AM, Sæther O, Eikenes L, Goa PE. Quantitative comparison of PET performance-Siemens biograph mCT and mMR. EJNMMI Phys. 2016;3(1):5.

Article  PubMed  PubMed Central  Google Scholar 

Delso G, Martinez-Möller A, Bundschuh RA, Nekolla SG, Ziegler SI. The effect of limited MR field of view in MR/PET attenuation correction. Med Phys. 2010;37(6):2804–12.

Article  PubMed  Google Scholar 

Sekine T, Delso G, Zeimpekis KG, de Galiza BF, Ter Voert E, Huellner M, et al. Reduction of (18)F-FDG dose in clinical PET/MR imaging by using silicon photomultiplier detectors. Radiology. 2018;286(1):249–59.

Article  PubMed  Google Scholar 

Al-Nabhani KZ, Syed R, Michopoulou S, Alkalbani J, Afaq A, Panagiotidis E, O’Meara C, et al. Qualitative and quantitative comparison of PET/CT and PET/MR imaging in clinical practice PET/MRI: Technical Challenges and Recent Advances Improving the detection of small lesions using a state-of-the-art time-of-flight PET/CT system and small-voxel reconstructions. J Nucl Med. 2014;55(1):88–94.

Article  CAS  PubMed  Google Scholar 

Alexander D, Michael S, Matthias E, Ambros JB, Sebastian F, Axel M-M, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med. 2012;53(6):845–55.

Article  Google Scholar 

Behr SC, Bahroos E, Hawkins RA, Nardo L, Ravanfar V, Capbarat EV, et al. Quantitative and visual assessments toward potential sub-mSv or ultrafast FDG PET using high-sensitivity TOF PET in PET/MRI. Mol Imaging Biol. 2018;20(3):492–500.

Article  PubMed  Google Scholar 

Levin CS, Maramraju SH, Khalighi MM, Deller TW, Delso G, Jansen F. Design features and mutual compatibility studies of the time-of-flight PET capable GE SIGNA PET/MR system. IEEE Trans Med Imaging. 2016;35(8):1907–14.

Article  PubMed  Google Scholar 

Zhang J, Maniawski P, Knopp MV. Performance evaluation of the next generation solid-state digital photon counting PET/CT system. EJNMMI Res. 2018;8(1):97.

Article  PubMed  PubMed Central  Google Scholar 

Chicheportiche A, Marciano R, Orevi M. Comparison of NEMA characterizations for discovery MI and discovery MI-DR TOF PET/CT systems at different sites and with other commercial PET/CT systems. EJNMMI Phys. 2020;7(1):4.

Article  PubMed  PubMed Central  Google Scholar 

Lindstrom E, Sundin A, Trampal C, Lindsjo L, Ilan E, Danfors T, et al. Evaluation of penalized-likelihood estimation reconstruction on a digital time-of-flight PET/CT Scanner for (18)F-FDG whole-body examinations. J Nucl Med. 2018;59(7):1152–8.

Article  PubMed  Google Scholar 

Parvizi N, Franklin JM, McGowan DR, Teoh EJ, Bradley KM, Gleeson FV. Does a novel penalized likelihood reconstruction of 18F-FDG PET-CT improve signal-to-background in colorectal liver metastases? Eur J Radiol. 2015;84(10):1873–8.

Article  PubMed 

留言 (0)

沒有登入
gif