The rise of big data: deep sequencing-driven computational methods are transforming the landscape of synthetic antibody design

Bradbury ARM, Sidhu S, Dübel S, McCafferty J. Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol. 2011;29(3):245–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adams JJ, Sidhu SS. Synthetic antibody technologies. Curr Opin Struct Biol. 2014;24(1):1–9. https://doi.org/10.1016/j.sbi.2013.11.003.

Article  CAS  PubMed  Google Scholar 

Chen G, Sidhu SS. Design and generation of synthetic antibody libraries for phage display. Methods Mol Biol. 2014;1131:113–31.

Article  CAS  PubMed  Google Scholar 

Chen G, Gorelik L, Simon KJ, Pavlenco A, Cheung A, Brickelmaier M, et al. Synthetic antibodies and peptides recognizing progressive multifocal leukoencephalopathyspecific point mutations in polyomavirus JC capsid viral protein 1. MAbs. 2015;7(4):681–92. https://doi.org/10.1080/19420862.2015.1038447.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miersch S, Sidhu SS. Synthetic antibodies: concepts, potential and practical considerations. Methods. 2012;57(4):486–98. https://doi.org/10.1016/j.ymeth.2012.06.012.

Article  CAS  PubMed  Google Scholar 

Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G. By-passing immunization. J Mol Biol. 1991;222(3):581–97.

Article  CAS  PubMed  Google Scholar 

Sidhu SS, Fellouse FA. Synthetic therapeutic antibodies. Nat Chem Biol. 2006;2(12):682–8.

Article  CAS  PubMed  Google Scholar 

Fuh G. Synthetic antibodies as therapeutics. Expert Opin Biol Ther. 2007;7(1):73–87. https://doi.org/10.1517/14712598.7.1.73.

Article  CAS  PubMed  Google Scholar 

Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation sequencing on genomics. J Genet Genomics. 2011;38(3):95–109.

Article  PubMed  PubMed Central  Google Scholar 

Mardis ER. Next-generation sequencing platforms. Annu Rev Anal Chem. 2013;6(1):287–303. https://doi.org/10.1146/annurev-anchem-062012-092628.

Article  CAS  Google Scholar 

Shendure J, Aiden EL. The expanding scope of DNA sequencing. Nat Biotechnol. 2012;30(11):1084–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meaburn E, Schulz R. Next generation sequencing in epigenetics: insights and challenges. Semin Cell Dev Biol. 2012;23(2):192–9.

Article  CAS  PubMed  Google Scholar 

Raoult D. Obesity pandemics and the modification of digestive bacterial flora. Eur J Clin Microbiol Infect Dis. 2008;27:631–4.

Article  CAS  PubMed  Google Scholar 

Jünemann S, Kleinbölting N, Jaenicke S, Henke C, Hassa J, Nelkner J, et al. Bioinformatics for NGS-based metagenomics and the application to biogas research. J Biotechnol. 2017;261:10–23.

Article  PubMed  Google Scholar 

Dong ZC, Chen Y. Transcriptomics: advances and approaches. Sci China Life Sci. 2013;56(10):960–7. https://doi.org/10.1007/s11427-013-4557-2.

Article  ADS  CAS  PubMed  Google Scholar 

Morganti S, Tarantino P, Ferraro E, D’Amico P, Duso BA, Curigliano G. Next generation sequencing (NGS): a revolutionary technology in pharmacogenomics and personalized medicine in cancer. Adv Exp Med Biol. 2019;1168:9–30. https://doi.org/10.1007/978-3-030-24100-1_2.

Article  CAS  PubMed  Google Scholar 

Frese KS, Katus HA, Meder B. Next-generation sequencing: from understanding biology to personalized medicine. Biology. 2013;2(1):378–98.

Article  PubMed  PubMed Central  Google Scholar 

Rabbani B, Nakaoka H, Akhondzadeh S, Tekin M, Mahdieh N. Next generation sequencing: implications in personalized medicine and pharmacogenomics. Mol Biosyst. 2016;12(6):1818–30.

Article  CAS  PubMed  Google Scholar 

Hong H, Zhang W, Su Z, Shen J, Ge W, Ning B, et al. Next-generation sequencing (NGS): a revolutionary technology in pharmacogenomics and personalized medicine. In: Omics for personalized medicine. New Delhi: Springer India; 2013. p. 39–61. https://doi.org/10.1007/978-81-322-1184-6_3.

Chapter  Google Scholar 

Meng W, Zhang B, Schwartz GW, Rosenfeld AM, Ren D, Thome JJC, et al. An atlas of B-cell clonal distribution in the human body. Nat Biotechnol. 2017;35(9):879–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Georgiou G, Ippolito GC, Beausang J, Busse CE, Wardemann H, Quake SR. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol. 2014;32(2):158–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robins H. Immunosequencing: applications of immune repertoire deep sequencing. Curr Opin Immunol. 2013;25(5):646–52.

Article  CAS  PubMed  Google Scholar 

Mathonet P, Ullman CG. The application of next generation sequencing to the understanding of antibody repertoires. Front Immunol. 2013;4:56179. https://doi.org/10.3389/fimmu.2013.00265/abstract.

Article  Google Scholar 

Glanville J, D’Angelo S, Khan TA, Reddy ST, Naranjo L, Ferrara F, et al. Deep sequencing in library selection projects: what insight does it bring? Curr Opin Struct Biol. 2015;1(33):146–60.

Article  Google Scholar 

Rouet R, Jackson KJL, Langley DB, Christ D. Next-generation sequencing of antibody display repertoires. Front Immunol. 2018;9:118. https://doi.org/10.3389/fimmu.2018.00118/full.

Article  PubMed  PubMed Central  Google Scholar 

Vaisman-Mentesh A, Wine Y. Monitoring phage biopanning by next-generation sequencing. Methods Mol Biol. 2018;1701:463–73.

Article  CAS  PubMed  Google Scholar 

Friedensohn S, Neumeier D, Khan TA, Csepregi L, Parola C, de Vries ARG, et al. Convergent selection in antibody repertoires is revealed by deep learning. bioRxiv. 2020. https://doi.org/10.1101/2020.02.25.965673v1.

Article  Google Scholar 

Lim YW, Adler AS, Johnson DS. Predicting antibody binders and generating synthetic antibodies using deep learning. MAbs. 2022;14(1).

Sebastiani M, Vacchi C, Manfredi A, Cassone G. Personalized medicine and machine learning: a roadmap for the future. J Clin Med. 2022;11(14):4110.

Article  PubMed  PubMed Central  Google Scholar 

Vadapalli S, Abdelhalim H, Zeeshan S, Ahmed Z. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Brief Bioinform. 2022;23(5):bbac191. https://doi.org/10.1093/bib/bbac191.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi HL, Yang HR, Shin HG, Hwang K, Kim JW, Lee JH, et al. Generation and next-generation sequencing-based characterization of a large human combinatorial antibody library. Int J Mol Sci. 2023;24(6):6011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y. Evolution of phage display libraries for therapeutic antibody discovery. MAbs. 2023;15(1).

Kim S, Park I, Park SG, Cho S, Kim JH, Sipper N, et al. Generation, diversity determination, and application to antibody selection of a human naïve fab library. Mol Cells. 2017;40(9):655–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta GR, et al. Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci USA. 2009;106(48):20216–21.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Matochko WL, Chu K, Jin B, Lee SW, Whitesides GM, Derda R. Deep sequencing analysis of phage libraries using Illumina platform. Methods. 2012;58(1):47–55. https://doi.org/10.1016/j.ymeth.2012.07.006.

Article  CAS  PubMed  Google Scholar 

Maruthachalam BV, Barreto K, Hogan D, Kusalik A, Geyer CR. Generation of synthetic antibody fragments with optimal complementarity determining region lengths for Notch-1 recognition. Front Microbiol. 2022;13: 931307.

Article  PubMed  PubMed Central  Google Scholar 

Henry KA, Next-Generation DNA. Sequencing of VH/VL repertoires: a primer and guide to applications in single-domain antibody discovery. Methods Mol Biol. 2018;1701:425–46.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif