Exploring Therapeutic Approaches for Vitiligo: An Inclusive Review from Translational Modalities to Alternative Therapies

Katz EL, Harris JE. Translational research in vitiligo Front Immunol. 2021;12:624517.

Article  CAS  PubMed  Google Scholar 

Bertolani M, Rodighiero E, De Felici del Giudice MB, Lotti T, Feliciani C, Satolli F. Vitiligo: what’s old, what’s new. Dermatol Rep. 2021;13:9142.

Article  CAS  Google Scholar 

Sarma N, Chakraborty S, Poojary S, Shashi Kumar BM, Gupta LK, Budamakuntla L, et al. A Nationwide, Multicentric Case-Control Study on Vitiligo (MEDEC-V) to elicit the magnitude and correlates. Indian J Dermatol. 2020;65:473–82.

Article  PubMed  PubMed Central  Google Scholar 

Ramot Y, Böhm M, Paus R. Translational neuroendocrinology of human skin: concepts and perspectives. Trends Mol Med. 2021;27:60–74.

Article  CAS  PubMed  Google Scholar 

He Y, Li S, Zhang W, Dai W, Cui T, Wang G, et al. Dysregulated autophagy increased melanocyte sensitivity to H2O2-induced oxidative stress in vitiligo. Sci Rep. 2017;7:42394.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Silverberg JI, Silverberg NB. Vitiligo disease triggers: psychological stressors preceding the onset of disease. Cutis. 2015;95:255–62.

PubMed  Google Scholar 

Bergqvist C, Ezzedine K. Vitiligo: a review. Dermatology. 2020;236:571–92.

Article  PubMed  Google Scholar 

Frisoli ML, Essien K, Harris JE. Vitiligo: mechanisms of pathogenesis and treatment. Annu Rev Immunol. 2020;38:621–48.

Article  CAS  PubMed  Google Scholar 

Jamal Y, Alshahrani AM, Arif JM, Almarshad FM. Robots in cancer surgery: a boon or bane. J Cancer Ther. 2020;11:803–23.

Article  Google Scholar 

Narahari SR, Aggithaya MG, Suraj KR. A protocol for systematic reviews of Ayurveda treatments. Int J Ayurveda Res. 2010;1:254–67.

Article  PubMed  PubMed Central  Google Scholar 

Magitta NF, Bøe Wolff AS, Johansson S, Skinningsrud B, Lie BA, Myhr K-M, et al. A coding polymorphism in NALP1 confers risk for autoimmune Addison’s disease and type 1 diabetes. Genes Immun. 2009;10:120–4.

Article  CAS  PubMed  Google Scholar 

Richmond JM, Frisoli ML, Harris JE. Innate immune mechanisms in vitiligo: danger from within. Curr Opin Immunol. 2013;25:676–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• He S, Xu J, Wu J. The promising role of chemokines in vitiligo: from oxidative stress to the autoimmune response. Song P, editor. Oxid Med Cell Longev. 2022;2022:8796735. This paper presents a thorough professional analysis that offers insights into the interplay between oxidative stress and autoimmunity, particularly in the context of vitiligo. The focus is placed on examining the role of chemotactic signals in this interaction.

D’Osualdo A, Reed JC. NLRP1, a regulator of innate immunity associated with vitiligo. Pigment Cell Melanoma Res. 2012;25:5–8.

Article  PubMed  Google Scholar 

Mosenson JA, Flood K, Klarquist J, Eby JM, Koshoffer A, Boissy RE, et al. Preferential secretion of inducible HSP70 by vitiligo melanocytes under stress. Pigment Cell Melanoma Res. 2014;27:209–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu R, Broady R, Huang Y, Wang Y, Yu J, Gao M, et al. Correction: transcriptome analysis reveals markers of aberrantly activated innate immunity in vitiligo lesional and non-lesional skin. PLoS One. 2013;8:e51040.

Google Scholar 

Zhang W, Wang X, He X, Xu Y. Editorial: adaptive immunity in local tissues. Front Immunol. 2023;14:1200663.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Bullock TNJ. The essential elements of adaptive immunity and their relevance to cancer immunology. In: Clinical immuno-oncology. Elsevier; 2024. p. 129–56. This paper offers a comprehensive review of alterations in the immune system associated with aging, exploring their possible implications for cancer and immunotherapy. Furthermore, it delves into the effects of chronic viral infections and frailty on these aspects.

Kotobuki Y, Tanemura A, Yang L, Itoi S, Wataya-Kaneda M, Murota H, et al. Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. Pigment Cell Melanoma Res. 2012;25:219–30.

Article  CAS  PubMed  Google Scholar 

Bassiouny DA, Shaker O. Role of interleukin-17 in the pathogenesis of vitiligo. Clin Exp Dermatol. 2011;36:292–7.

Article  CAS  PubMed  Google Scholar 

Rahimi A, Hossein-Nataj H, Hajheydari Z, Aryanian Z, Shayannia A, Ajami A, et al. Expression analysis of PD-1 and Tim-3 immune checkpoint receptors in patients with vitiligo; positive association with disease activity. Exp Dermatol. 2019;28:674–81.

Article  CAS  PubMed  Google Scholar 

Yang Q, Zhang G, Su M, Leung G, Lui H, Zhou P, et al. Vitiligo skin biomarkers associated with favorable therapeutic response. Front Immunol. 2021;12:613031.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Zhang Q, Wang Q, Zhang L-X. Granzyme B: a novel therapeutic target for treatment of atopic dermatitis. Indian J Dermatol Venereol Leprol. 2022;89:166. This review investigates the relationship between granzyme B and atopic dermatitis with the goal of identifying a novel therapeutic target for the clinical management of this condition.

Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15:388–400.

Article  CAS  PubMed  Google Scholar 

Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12:25–36.

Article  CAS  PubMed  Google Scholar 

Rashighi M, Harris JE. Interfering with the IFN-γ/CXCL10 pathway to develop new targeted treatments for vitiligo. In: Annals of translational medicine. AME Publishing Company; 2015.

Google Scholar 

Yang L, Wei Y, Sun Y, Shi W, Yang J, Zhu L, et al. Interferon-gamma inhibits melanogenesis and induces apoptosis in melanocytes: a pivotal role of CD8+ cytotoxic T lymphocytes in vitiligo. Acta Derm Venereol. 2015;95:664–70.

Article  CAS  PubMed  Google Scholar 

Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, Su M-W, et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med. 2014;6:223ra23.

Article  PubMed  PubMed Central  Google Scholar 

Sayoc-Becerra A, Krishnan M, Fan S, Jimenez J, Hernandez R, Gibson K, et al. The JAK-inhibitor tofacitinib rescues human intestinal epithelial cells and colonoids from cytokine-induced barrier dysfunction. Inflamm Bowel Dis. 2020;26:407–22.

Article  PubMed  Google Scholar 

Yan Z, Gibson SA, Buckley JA, Qin H, Benveniste EN. Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin Immunol. 2018;189:4–13.

Article  CAS  PubMed  Google Scholar 

Roberts GHL, Santorico SA, Spritz RA. The genetic architecture of vitiligo. Pigment Cell Melanoma Res. 2020;33:8–15. https://doi.org/10.1111/pcmr.12848.

Article  CAS  PubMed  Google Scholar 

Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL, et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet. 2012;44:676–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spritz RA, Santorico SA. The genetic basis of vitiligo. J Invest Dermatol. 2021;141:265–73.

Article  CAS  PubMed  Google Scholar 

Khopkar U, Shankarkumar U, Ghosh K, Misri R. Comparative case control study of clinical features and human leukocyte antigen susceptibility between familial and nonfamilial vitiligo. Indian J Dermatol Venereol Leprol. 2009;75:583.

Article  PubMed  Google Scholar 

Chen J, Li S, Li C. Mechanisms of melanocyte death in vitiligo. Med Res Rev. 2021;41:1138–66.

Article  PubMed  Google Scholar 

Xu M, Liu Y, Liu Y, Li X, Chen G, Dong W, et al. Genetic polymorphisms of GZMB and vitiligo: A genetic association study based on Chinese Han population. Sci Rep. 2018;8:13001.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Jin Y, Andersen GHL, Santorico SA, Spritz RA. Multiple functional variants of IFIH1, a gene involved in triggering innate immune responses, protect against vitiligo. J Investig Dermatol. 2017;137:522–4.

Article  CAS  PubMed  Google Scholar 

Denat L, Kadekaro AL, Marrot L, Leachman SA, Abdel-Malek ZA. Melanocytes as instigators and victims of oxidative stress. J Investig Dermatol. 2014;134:1512–8.

Article  CAS  PubMed  Google Scholar 

Wagner RY, Luciani F, Cario-André M, Rubod A, Petit V, Benzekri L, et al. Altered e-cadherin levels and distribution in melanocytes precede clinical manifestations of vitiligo. J Investig Dermatol. 2015;135:1810–9.

Article  CAS  PubMed  Google Scholar 

Abdel-Malek ZA, Jordan C, Ho T, Upadhyay PR, Fleischer A, Hamzavi I. The enigma and challenges of vitiligo pathophysiology and treatment. Pigment Cell Melanoma Res. 2020;33:778–87.

Article  PubMed  Google Scholar 

• Cao X, Li Y, Luo Y, Chu T, Yang H, Wen J, et al. Transient receptor potential melastatin 2 regulates neutrophil extracellular traps fo

留言 (0)

沒有登入
gif