Katz EL, Harris JE. Translational research in vitiligo Front Immunol. 2021;12:624517.
Article CAS PubMed Google Scholar
Bertolani M, Rodighiero E, De Felici del Giudice MB, Lotti T, Feliciani C, Satolli F. Vitiligo: what’s old, what’s new. Dermatol Rep. 2021;13:9142.
Sarma N, Chakraborty S, Poojary S, Shashi Kumar BM, Gupta LK, Budamakuntla L, et al. A Nationwide, Multicentric Case-Control Study on Vitiligo (MEDEC-V) to elicit the magnitude and correlates. Indian J Dermatol. 2020;65:473–82.
Article PubMed PubMed Central Google Scholar
Ramot Y, Böhm M, Paus R. Translational neuroendocrinology of human skin: concepts and perspectives. Trends Mol Med. 2021;27:60–74.
Article CAS PubMed Google Scholar
He Y, Li S, Zhang W, Dai W, Cui T, Wang G, et al. Dysregulated autophagy increased melanocyte sensitivity to H2O2-induced oxidative stress in vitiligo. Sci Rep. 2017;7:42394.
Article ADS CAS PubMed PubMed Central Google Scholar
Silverberg JI, Silverberg NB. Vitiligo disease triggers: psychological stressors preceding the onset of disease. Cutis. 2015;95:255–62.
Bergqvist C, Ezzedine K. Vitiligo: a review. Dermatology. 2020;236:571–92.
Frisoli ML, Essien K, Harris JE. Vitiligo: mechanisms of pathogenesis and treatment. Annu Rev Immunol. 2020;38:621–48.
Article CAS PubMed Google Scholar
Jamal Y, Alshahrani AM, Arif JM, Almarshad FM. Robots in cancer surgery: a boon or bane. J Cancer Ther. 2020;11:803–23.
Narahari SR, Aggithaya MG, Suraj KR. A protocol for systematic reviews of Ayurveda treatments. Int J Ayurveda Res. 2010;1:254–67.
Article PubMed PubMed Central Google Scholar
Magitta NF, Bøe Wolff AS, Johansson S, Skinningsrud B, Lie BA, Myhr K-M, et al. A coding polymorphism in NALP1 confers risk for autoimmune Addison’s disease and type 1 diabetes. Genes Immun. 2009;10:120–4.
Article CAS PubMed Google Scholar
Richmond JM, Frisoli ML, Harris JE. Innate immune mechanisms in vitiligo: danger from within. Curr Opin Immunol. 2013;25:676–82.
Article CAS PubMed PubMed Central Google Scholar
•• He S, Xu J, Wu J. The promising role of chemokines in vitiligo: from oxidative stress to the autoimmune response. Song P, editor. Oxid Med Cell Longev. 2022;2022:8796735. This paper presents a thorough professional analysis that offers insights into the interplay between oxidative stress and autoimmunity, particularly in the context of vitiligo. The focus is placed on examining the role of chemotactic signals in this interaction.
D’Osualdo A, Reed JC. NLRP1, a regulator of innate immunity associated with vitiligo. Pigment Cell Melanoma Res. 2012;25:5–8.
Mosenson JA, Flood K, Klarquist J, Eby JM, Koshoffer A, Boissy RE, et al. Preferential secretion of inducible HSP70 by vitiligo melanocytes under stress. Pigment Cell Melanoma Res. 2014;27:209–20.
Article CAS PubMed PubMed Central Google Scholar
Yu R, Broady R, Huang Y, Wang Y, Yu J, Gao M, et al. Correction: transcriptome analysis reveals markers of aberrantly activated innate immunity in vitiligo lesional and non-lesional skin. PLoS One. 2013;8:e51040.
Zhang W, Wang X, He X, Xu Y. Editorial: adaptive immunity in local tissues. Front Immunol. 2023;14:1200663.
Article CAS PubMed PubMed Central Google Scholar
• Bullock TNJ. The essential elements of adaptive immunity and their relevance to cancer immunology. In: Clinical immuno-oncology. Elsevier; 2024. p. 129–56. This paper offers a comprehensive review of alterations in the immune system associated with aging, exploring their possible implications for cancer and immunotherapy. Furthermore, it delves into the effects of chronic viral infections and frailty on these aspects.
Kotobuki Y, Tanemura A, Yang L, Itoi S, Wataya-Kaneda M, Murota H, et al. Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. Pigment Cell Melanoma Res. 2012;25:219–30.
Article CAS PubMed Google Scholar
Bassiouny DA, Shaker O. Role of interleukin-17 in the pathogenesis of vitiligo. Clin Exp Dermatol. 2011;36:292–7.
Article CAS PubMed Google Scholar
Rahimi A, Hossein-Nataj H, Hajheydari Z, Aryanian Z, Shayannia A, Ajami A, et al. Expression analysis of PD-1 and Tim-3 immune checkpoint receptors in patients with vitiligo; positive association with disease activity. Exp Dermatol. 2019;28:674–81.
Article CAS PubMed Google Scholar
Yang Q, Zhang G, Su M, Leung G, Lui H, Zhou P, et al. Vitiligo skin biomarkers associated with favorable therapeutic response. Front Immunol. 2021;12:613031.
Article CAS PubMed PubMed Central Google Scholar
• Zhang Q, Wang Q, Zhang L-X. Granzyme B: a novel therapeutic target for treatment of atopic dermatitis. Indian J Dermatol Venereol Leprol. 2022;89:166. This review investigates the relationship between granzyme B and atopic dermatitis with the goal of identifying a novel therapeutic target for the clinical management of this condition.
Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15:388–400.
Article CAS PubMed Google Scholar
Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12:25–36.
Article CAS PubMed Google Scholar
Rashighi M, Harris JE. Interfering with the IFN-γ/CXCL10 pathway to develop new targeted treatments for vitiligo. In: Annals of translational medicine. AME Publishing Company; 2015.
Yang L, Wei Y, Sun Y, Shi W, Yang J, Zhu L, et al. Interferon-gamma inhibits melanogenesis and induces apoptosis in melanocytes: a pivotal role of CD8+ cytotoxic T lymphocytes in vitiligo. Acta Derm Venereol. 2015;95:664–70.
Article CAS PubMed Google Scholar
Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, Su M-W, et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med. 2014;6:223ra23.
Article PubMed PubMed Central Google Scholar
Sayoc-Becerra A, Krishnan M, Fan S, Jimenez J, Hernandez R, Gibson K, et al. The JAK-inhibitor tofacitinib rescues human intestinal epithelial cells and colonoids from cytokine-induced barrier dysfunction. Inflamm Bowel Dis. 2020;26:407–22.
Yan Z, Gibson SA, Buckley JA, Qin H, Benveniste EN. Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin Immunol. 2018;189:4–13.
Article CAS PubMed Google Scholar
Roberts GHL, Santorico SA, Spritz RA. The genetic architecture of vitiligo. Pigment Cell Melanoma Res. 2020;33:8–15. https://doi.org/10.1111/pcmr.12848.
Article CAS PubMed Google Scholar
Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL, et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet. 2012;44:676–80.
Article CAS PubMed PubMed Central Google Scholar
Spritz RA, Santorico SA. The genetic basis of vitiligo. J Invest Dermatol. 2021;141:265–73.
Article CAS PubMed Google Scholar
Khopkar U, Shankarkumar U, Ghosh K, Misri R. Comparative case control study of clinical features and human leukocyte antigen susceptibility between familial and nonfamilial vitiligo. Indian J Dermatol Venereol Leprol. 2009;75:583.
Chen J, Li S, Li C. Mechanisms of melanocyte death in vitiligo. Med Res Rev. 2021;41:1138–66.
Xu M, Liu Y, Liu Y, Li X, Chen G, Dong W, et al. Genetic polymorphisms of GZMB and vitiligo: A genetic association study based on Chinese Han population. Sci Rep. 2018;8:13001.
Article ADS PubMed PubMed Central Google Scholar
Jin Y, Andersen GHL, Santorico SA, Spritz RA. Multiple functional variants of IFIH1, a gene involved in triggering innate immune responses, protect against vitiligo. J Investig Dermatol. 2017;137:522–4.
Article CAS PubMed Google Scholar
Denat L, Kadekaro AL, Marrot L, Leachman SA, Abdel-Malek ZA. Melanocytes as instigators and victims of oxidative stress. J Investig Dermatol. 2014;134:1512–8.
Article CAS PubMed Google Scholar
Wagner RY, Luciani F, Cario-André M, Rubod A, Petit V, Benzekri L, et al. Altered e-cadherin levels and distribution in melanocytes precede clinical manifestations of vitiligo. J Investig Dermatol. 2015;135:1810–9.
Article CAS PubMed Google Scholar
Abdel-Malek ZA, Jordan C, Ho T, Upadhyay PR, Fleischer A, Hamzavi I. The enigma and challenges of vitiligo pathophysiology and treatment. Pigment Cell Melanoma Res. 2020;33:778–87.
• Cao X, Li Y, Luo Y, Chu T, Yang H, Wen J, et al. Transient receptor potential melastatin 2 regulates neutrophil extracellular traps fo
留言 (0)