Expanding the genetic and phenotypic spectrum of TRAPPC9 and MID2-related neurodevelopmental disabilities: report of two novel mutations, 3D-modelling, and molecular docking studies

May ME, Kennedy CH. Health and problem behavior among people with intellectual disabilities. Behav Anal Pr. 2010;3:4–12.

Google Scholar 

Battle DE. Diagnostic and Statistical Manual of Mental Disorders (DSM). Codas. 2013;25:191–2.

PubMed  Google Scholar 

Hodges H, Fealko C, Soares N. Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Transl Pediatr. 2020;9:S55–65.

Article  PubMed  PubMed Central  Google Scholar 

Bodnar B, DeGruttola A, Zhu Y, Lin Y, Zhang Y, Mo X, et al. Emerging role of NIK/IKK2-binding protein (NIBP)/Trafficking protein particle complex 9 (TRAPPC9) in nervous system diseases. Transl Res. 2020;224:55–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marangi G, Leuzzi V, Manti F, Lattante S, Orteschi D, Pecile V, et al. TRAPPC9-related autosomal recessive intellectual disability: report of a new mutation and clinical phenotype. Eur J Hum Genet. 2013;21:229–32.

Article  CAS  PubMed  Google Scholar 

Chiurazzi P, Kiani AK, Miertus J, Paolacci S, Barati S, Manara E, et al. Genetic analysis of intellectual disability and autism. Acta Biomed. 2020;91:e2020003.

CAS  PubMed  PubMed Central  Google Scholar 

Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet. 2016;98:149–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tejada MI, Ibarluzea N. Non-syndromic X linked intellectual disability: current knowledge in light of the recent advances in molecular and functional studies. Clin Genet. 2020;97:677–87.

Article  CAS  PubMed  Google Scholar 

Ts G, Ka M, MK, GK, Rc J, Bk T. Targeted deep resequencing identifies MID2 mutation for X-linked intellectual disability with varied disease severity in a large kindred from India. Human Mutat. 2014;35. Available from: https://pubmed.ncbi.nlm.nih.gov/24115387/.

Schuler BA, Nelson ET, Koziura M, Cogan JD, Hamid R, Phillips JA. Lessons learned: next-generation sequencing applied to undiagnosed genetic diseases. J Clin Invest. 2022;132. Available from: https://www.jci.org/articles/view/154942.

Sparrow SS, Cicchetti DV. The vineland adaptive behavior scales. In: Major psychological assessment instruments, Vol 2. Needham Heights, MA, US: Allyn & Bacon; 1989. p. 199–231.

Rellini E, Tortolani D, Trillo S, Carbone S, Montecchi F. Childhood Autism Rating Scale (CARS) and Autism Behavior Checklist (ABC) correspondence and conflicts with DSM-IV criteria in diagnosis of autism. J Autism Dev Disord. 2004;34:703–8.

Article  CAS  PubMed  Google Scholar 

Chouchen J, Mahfood M, Alobathani M, Eldin Mohamed WK, Tlili A. Clinical heterogeneity of the SLC26A4 gene in UAE patients with hearing loss and bioinformatics investigation of DFNB4/Pendred syndrome missense mutations. Int J Pediatr Otorhinolaryngol. 2021;140:110467.

Article  PubMed  Google Scholar 

Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361–2.

Article  CAS  PubMed  Google Scholar 

Hu J, Ng PC. Predicting the effects of frameshifting indels. Genome Biol. 2012;13:R9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan Y, Zhang D, Zhou P, Li B, Huang SY. HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017;45:W365–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JH, Huang CF, Chuang YJ, Lee CY, Yu WH, Wu CC, et al. Identifying new liver X receptor alpha modulators and distinguishing between agonists and antagonists by crystal ligand pocket screening. Future Med Chem. 2020; Available from: https://www.future-science.com/doi/abs/10.4155/fmc-2020-0069.

Gholkar AA, Senese S, Lo YC, Vides E, Contreras E, Hodara E, et al. The X-linked-intellectual-disability-associated ubiquitin ligase Mid2 interacts with astrin and regulates astrin levels to promote cell division. Cell Rep. 2016;14:180–8.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Bitner D, Pontes Filho AA, Li F, Liu S, Wang H, et al. Expression and function of NIK- and IKK2-binding protein (NIBP) in mouse enteric nervous system. Neurogastroenterol Motil. 2014;26:77–97.

Article  CAS  PubMed  Google Scholar 

Abbasi AA, Blaesius K, Hu H, Latif Z, Picker-Minh S, Khan MN, et al. Identification of a novel homozygous TRAPPC9 gene mutation causing non-syndromic intellectual disability, speech disorder, and secondary microcephaly. Am J Med Genet B Neuropsychiatr Genet. 2017;174:839–45.

Article  CAS  PubMed  Google Scholar 

Liang ZS, Cimino I, Yalcin B, Raghupathy N, Vancollie VE, Ibarra-Soria X, et al. Trappc9 deficiency causes parent-of-origin dependent microcephaly and obesity. PLoS Genet. 2020;16:e1008916.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mir A, Kaufman L, Noor A, Motazacker MM, Jamil T, Azam M, et al. Identification of mutations in TRAPPC9, which encodes the NIK- and IKK-beta-binding protein, in nonsyndromic autosomal-recessive mental retardation. Am J Hum Genet. 2009;85:909–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mochida GH, Mahajnah M, Hill AD, Basel-Vanagaite L, Gleason D, Hill RS, et al. A truncating mutation of TRAPPC9 is associated with autosomal-recessive intellectual disability and postnatal microcephaly. Am J Hum Genet. 2009;85:897–902.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Philippe O, Rio M, Carioux A, Plaza JM, Guigue P, Molinari F, et al. Combination of linkage mapping and microarray-expression analysis identifies NF-kappaB signaling defect as a cause of autosomal-recessive mental retardation. Am J Hum Genet. 2009;85:903–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koifman A, Feigenbaum A, Bi W, Shaffer LG, Rosenfeld J, Blaser S, et al. A homozygous deletion of 8q24.3 including the NIBP gene associated with severe developmental delay, dysgenesis of the corpus callosum, and dysmorphic facial features. Am J Med Genet A. 2010;152A:1268–72.

Article  PubMed  Google Scholar 

Abou Jamra R, Wohlfart S, Zweier M, Uebe S, Priebe L, Ekici A, et al. Homozygosity mapping in 64 Syrian consanguineous families with non-specific intellectual disability reveals 11 novel loci and high heterogeneity. Eur J Hum Genet. 2011;19:1161–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kakar N, Goebel I, Daud S, Nürnberg G, Agha N, Ahmad A, et al. A homozygous splice site mutation in TRAPPC9 causes intellectual disability and microcephaly. Eur J Med Genet. 2012;55:727–31.

Article  PubMed  Google Scholar 

Giorgio E, Ciolfi A, Biamino E, Caputo V, Di Gregorio E, Belligni EF, et al. Whole exome sequencing is necessary to clarify ID/DD cases with de novo copy number variants of uncertain significance: two proof-of-concept examples. Am J Med Genet A. 2016;170:1772–9.

Article  CAS  PubMed  Google Scholar 

Mortreux J, Busa T, Germain DP, Nadeau G, Puechberty J, Coubes C, et al. The role of CNVs in the etiology of rare autosomal recessive disorders: the example of TRAPPC9-associated intellectual disability. Eur J Hum Genet. 2018;26:143–8.

Article  CAS  PubMed  Google Scholar 

Duerinckx S, Meuwissen M, Perazzolo C, Desmyter L, Pirson I, Abramowicz M. Phenotypes in siblings with homozygous mutations of TRAPPC9 and/or MCPH1 support a bifunctional model of MCPH1. Mol Genet Genom Med. 2018;6:660–5.

Article  CAS  Google Scholar 

Hnoonual A, Graidist P, Kritsaneepaiboon S, Limprasert P. Novel compound heterozygous mutations in the TRAPPC9 gene in two siblings with autism and intellectual disability. Front Genet. 2019;10:61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai Z, Kong X. [Diagnosis of a case with mental retardation due to novel compound heterozygous variants of TRAPPC9 gene]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2019;36:1115–9.

PubMed  Google Scholar 

Krämer J, Beer M, Bode H, Winter B. Two novel compound heterozygous mutations in the TRAPPC9 gene reveal a connection of non-syndromic intellectual disability and autism spectrum disorder. Front Genet. 2020;11:972.

Article  PubMed  Google Scholar 

Wilton KM, Gunderson LB, Hasadsri L, Wood CP, Schimmenti LA. Profound intellectual disability caused by homozygous TRAPPC9 pathogenic variant in a man from Malta. Mol Genet Genom Med. 2020;8:e1211.

Article  CAS  Google Scholar 

Alvarez-Mora MI, Corominas J, Gilissen C, Sanchez A, Madrigal I, Rodriguez-Revenga L. Novel compound heterozygous mutation in TRAPPC9 gene: the relevance of whole genome sequencing. Genes. 2021;12:557.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ben Ayed I, Bouchaala W, Bouzid A, Feki W, Souissi A, Ben Nsir S, et al. Further insights into the spectrum phenotype of TRAPPC9 and CDK5RAP2 genes, segregating independently in a large Tunisian family with intellectual disability and microcephaly. Eur J Med Genet. 2021;64:104373.

Article  PubMed  Google Scholar 

Yousefipour F, Mozhdehipanah H, Mahjoubi F. Identification of two novel homozygous nonsense mutations in TRAPPC9 in two unrelated consanguineous families with intellectual Disability from Iran. Mol Genet Genom Med. 2021;9:e1610.

Article  CAS  Google Scholar 

Radenkovic S, Martinelli D, Zhang Y, Preston GJ, Maiorana A, Terracciano A, et al. TRAPPC9-CDG: a novel congenital disorder of glycosylation with dysmorphic features and intellectual disability. Genet Med. 2022;24:894–904.

Article  CAS  PubMed  Google Scholar 

Uctepe E, Yesilyurt A, Esen FN, Tümer S, Mancılar H, Sonmez FM. TRAPPC9-related intellectual disability: report of two new cases and review of the literature. Mol Syndromol. 2023;14:485–92.

Article 

留言 (0)

沒有登入
gif