Kinase PIM1 governs ferroptosis to reduce retinal microvascular endothelial cell dysfunction triggered by high glucose

Andrés-Blasco I, Gallego-Martínez A, Machado X et al (2023) Oxidative stress, inflammatory, angiogenic, and apoptotic molecules in proliferative diabetic retinopathy and diabetic macular edema patients. Int J Mol Sci 24. https://doi.org/10.3390/ijms24098227

Cho H, Sobrin L (2014) Genetics of diabetic retinopathy. Curr Diab Rep 14:515. https://doi.org/10.1007/s11892-014-0515-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cole JB, Florez JC (2020) Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 16:377–390. https://doi.org/10.1038/s41581-020-0278-5

Article  PubMed  PubMed Central  Google Scholar 

Crabtree GS, Chang JS (2021) Management of complications and vision loss from proliferative diabetic retinopathy. Curr Diab Rep 21:33. https://doi.org/10.1007/s11892-021-01396-2

Article  PubMed  Google Scholar 

Forrester JV, Kuffova L, Delibegovic M (2020) The role of inflammation in diabetic retinopathy. Front Immunol 11:583687. https://doi.org/10.3389/fimmu.2020.583687

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gan B (2021) Mitochondrial regulation of ferroptosis. J Cell Biol 220. https://doi.org/10.1083/jcb.202105043

Gonzalez-Cortes JH, Martinez-Pacheco VA, Gonzalez-Cantu JE et al (2022) Current treatments and innovations in diabetic retinopathy and diabetic macular edema. Pharmaceutics 15. https://doi.org/10.3390/pharmaceutics15010122

Hammes HP (2018) Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia 61:29–38. https://doi.org/10.1007/s00125-017-4435-8

Article  PubMed  Google Scholar 

Kang Q, Yang C (2020) Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 37:101799. https://doi.org/10.1016/j.redox.2020.101799

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaštelan S, Orešković I, Bišćan F, Kaštelan H, Gverović Antunica A (2020) Inflammatory and angiogenic biomarkers in diabetic retinopathy. Biochem Med (Zagreb) 30:030502. https://doi.org/10.11613/bm.2020.030502

Article  PubMed  Google Scholar 

Li H, Xie L, Zhu L et al (2022) Multicellular immune dynamics implicate PIM1 as a potential therapeutic target for uveitis. Nat Commun 13:5866. https://doi.org/10.1038/s41467-022-33502-7

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Liu C, Sun W, Zhu T et al (2022) Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy. Redox Biol 52:102292. https://doi.org/10.1016/j.redox.2022.102292

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Shang Y, Yan Z, Li H, Wang Z, Li Z, Liu Z (2021) Pim1 kinase provides protection against high glucose-induced stress and apoptosis in cultured dorsal root ganglion neurons. Neurosci Res 169:9–16. https://doi.org/10.1016/j.neures.2020.06.004

Article  CAS  PubMed  Google Scholar 

López-Contreras AK, Martínez-Ruiz MG, Olvera-Montaño C et al (2020) Importance of the use of oxidative stress biomarkers and inflammatory profile in aqueous and vitreous humor in diabetic retinopathy. Antioxidants (Basel) 9. https://doi.org/10.3390/antiox9090891

Ouyang J, Zhou L, Wang Q (2023) Spotlight on iron and ferroptosis: research progress in diabetic retinopathy. Front Endocrinol (Lausanne) 14:1234824. https://doi.org/10.3389/fendo.2023.1234824

Article  PubMed  Google Scholar 

Rudraraju M, Narayanan SP, Somanath PR (2020) Regulation of blood-retinal barrier cell-junctions in diabetic retinopathy. Pharmacol Res 161:105115. https://doi.org/10.1016/j.phrs.2020.105115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shang GK, Han L, Wang ZH et al (2021) Pim1 knockout alleviates sarcopenia in aging mice via reducing adipogenic differentiation of PDGFRα(+) mesenchymal progenitors. J Cachexia Sarcopenia Muscle 12:1741–1756. https://doi.org/10.1002/jcsm.12770

Article  PubMed  PubMed Central  Google Scholar 

Shao J, Bai Z, Zhang L, Zhang F (2022) Ferrostatin-1 alleviates tissue and cell damage in diabetic retinopathy by improving the antioxidant capacity of the Xc(-)-GPX4 system. Cell Death Discov 8:426. https://doi.org/10.1038/s41420-022-01141-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan Y, Fukutomi A, Sun MT, Durkin S, Gilhotra J, Chan WO (2021) Anti-VEGF crunch syndrome in proliferative diabetic retinopathy: a review. Surv Ophthalmol 66:926–932. https://doi.org/10.1016/j.survophthal.2021.03.001

Article  PubMed  Google Scholar 

Wang JH, Roberts GE, Liu GS (2020) Updates on gene therapy for diabetic retinopathy. Curr Diab Rep 20:22. https://doi.org/10.1007/s11892-020-01308-w

Article  PubMed  PubMed Central  Google Scholar 

Wang W, Lo ACY (2018) Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci 19. https://doi.org/10.3390/ijms19061816

Wu MY, Yiang GT, Lai TT, Li CJ (2018) The oxidative stress and mitochondrial dysfunction during the pathogenesis of diabetic retinopathy. Oxid Med Cell Longev 2018:3420187. https://doi.org/10.1155/2018/3420187

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia X, Liang Y, Zheng W, Lin D, Sun S (2020) miR-410-5p promotes the development of diabetic cardiomyopathy by suppressing PIM1-induced anti-apoptosis. Mol Cell Probes 52:101558. https://doi.org/10.1016/j.mcp.2020.101558

Article  CAS  PubMed  Google Scholar 

Yan Z, Wang C, Meng Z et al (2022) C1q/TNF-related protein 3 prevents diabetic retinopathy via AMPK-dependent stabilization of blood-retinal barrier tight junctions. Cells 11. https://doi.org/10.3390/cells11050779

Yang XD, Yang YY (2022) Ferroptosis as a novel therapeutic target for diabetes and its complications. Front Endocrinol (Lausanne) 13:853822. https://doi.org/10.3389/fendo.2022.853822

Article  PubMed  Google Scholar 

Youngblood H, Robinson R, Sharma A, Sharma S (2019) Proteomic biomarkers of retinal inflammation in diabetic retinopathy. Int J Mol Sci 20. https://doi.org/10.3390/ijms20194755

Yuan Y, Wang C, Zhuang X et al (2022) PIM1 promotes hepatic conversion by suppressing reprogramming-induced ferroptosis and cell cycle arrest. Nat Commun 13:5237. https://doi.org/10.1038/s41467-022-32976-9

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Zhang S, Shuai L, Wang D et al (2020) Pim-1 protects retinal ganglion cells by enhancing their regenerative ability following optic nerve crush. Exp Neurobiol 29:249–272. https://doi.org/10.5607/en20019

Article  PubMed  PubMed Central  Google Scholar 

Zhao Y, Lei Y, Ning H et al (2023) PGF(2α) facilitates pathological retinal angiogenesis by modulating endothelial FOS-driven ELR(+) CXC chemokine expression. EMBO Mol Med 15:e16373. https://doi.org/10.15252/emmm.202216373

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif