Epigenetic age acceleration and risk of aortic valve stenosis: a bidirectional Mendelian randomization study

Iung B, et al. A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on Valvular Heart Disease. Eur Heart J. 2003;24(13):1231–43.

Article  PubMed  Google Scholar 

Goody PR, et al. Aortic valve stenosis: from basic mechanisms to novel therapeutic targets. Arterioscler Thromb Vasc Biol. 2020;40(4):885–900.

Article  CAS  PubMed  Google Scholar 

Nkomo VT, et al. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368(9540):1005–11.

Article  PubMed  Google Scholar 

Otto CM, Prendergast B. Aortic-valve stenosis—from patients at risk to severe valve obstruction. N Engl J Med. 2014;371(8):744–56.

Article  CAS  PubMed  Google Scholar 

Bakaeen FG, Rosengart TK, Carabello BA. Aortic stenosis. Ann Intern Med. 2017;166(1):ITC1–16.

Article  PubMed  Google Scholar 

Zakkar M, Bryan AJ, Angelini GD. Aortic stenosis: diagnosis and management. BMJ. 2016;355:i5425.

Article  CAS  PubMed  Google Scholar 

Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371–84.

Article  CAS  PubMed  Google Scholar 

Jylhava J, Pedersen NL, Hagg S. Biological age predictors. EBioMedicine. 2017;21:29–36.

Article  PubMed  PubMed Central  Google Scholar 

Hannum G, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.

Article  CAS  PubMed  Google Scholar 

Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.

Article  PubMed  PubMed Central  Google Scholar 

Levine ME, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91.

Article  PubMed  Google Scholar 

Lu AT, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–27.

Article  CAS  PubMed  Google Scholar 

Jiang R, et al. The association of accelerated epigenetic age with all-cause mortality in cardiac catheterization patients as mediated by vascular and cardiometabolic outcomes. Clin Epigenet. 2022;14(1):165.

Article  CAS  Google Scholar 

Ammous F, et al. Epigenetic age acceleration is associated with cardiometabolic risk factors and clinical cardiovascular disease risk scores in African Americans. Clin Epigenet. 2021;13(1):55.

Article  CAS  Google Scholar 

Cote N, Pibarot P, Clavel MA. Aortic stenosis: what is the role of aging processes? Aging (Albany NY). 2019;11(4):1085–6.

Article  PubMed  Google Scholar 

Smith GD, Ebrahim S. “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.

Article  PubMed  Google Scholar 

McCartney DL, et al. Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biol. 2021;22(1):194.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Z, et al. Effects of iron homeostasis on epigenetic age acceleration: a two-sample Mendelian randomization study. Clin Epigenet. 2023;15(1):159.

Article  Google Scholar 

Chen X, et al. Kidney damage causally affects the brain cortical structure: a Mendelian randomization study. EBioMedicine. 2021;72:103592.

Article  PubMed  PubMed Central  Google Scholar 

Burgess S, Thompson SG, Collaboration CCG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40(3):755–64.

Article  PubMed  Google Scholar 

Burgess S, et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res. 2019;4:186.

Article  PubMed  Google Scholar 

Zhang F, et al. Causality between heart failure and epigenetic age: a bidirectional Mendelian randomization study. ESC Heart Fail. 2023;10(5):2903–13.

Article  PubMed  PubMed Central  Google Scholar 

Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med. 2016;35(11):1880–906.

Article  MathSciNet  PubMed  Google Scholar 

Bowden J, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.

Article  PubMed  PubMed Central  Google Scholar 

Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):377–89.

Article  PubMed  PubMed Central  Google Scholar 

Greco MF, et al. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34(21):2926–40.

Article  ADS  MathSciNet  Google Scholar 

Verbanck M, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ginghina C, et al. Calcific aortic valve disease and aortic atherosclerosis–two faces of the same disease? Rom J Intern Med. 2009;47(4):319–29.

PubMed  Google Scholar 

Molnar AA, Pasztor D, Merkely B. Cellular senescence, aging and non-aging processes in calcified aortic valve stenosis: from bench-side to bedside. Cells. 2022;11(21):3389.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stephens EH, et al. Age-related changes in material behavior of porcine mitral and aortic valves and correlation to matrix composition. Tissue Eng Part A. 2010;16(3):867–78.

Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

VanAuker MD. Age-related changes in hemodynamics affecting valve performance. Am J Geriatr Cardiol. 2006;15(5):277–83; quiz 284-5.

Chen MS, Lee RT, Garbern JC. Senescence mechanisms and targets in the heart. Cardiovasc Res. 2022;118(5):1173–87.

Article  CAS  PubMed  Google Scholar 

Song P, An J, Zou MH. Immune clearance of senescent cells to combat ageing and chronic diseases. Cells. 2020;9(3):671.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsumoto Y, et al. Reduced number and function of endothelial progenitor cells in patients with aortic valve stenosis: a novel concept for valvular endothelial cell repair. Eur Heart J. 2009;30(3):346–55.

Article  PubMed  Google Scholar 

Mouchiroud L, et al. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell. 2013;154(2):430–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carter S, et al. Sirt1 inhibits resistin expression in aortic stenosis. PLoS ONE. 2012;7(4): e35110.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Samiei N, et al. Modulatory role of SIRT1 and resistin as therapeutic targets in patients with aortic valve stenosis. Arch Med Res. 2019;50(6):333–41.

Article  CAS  PubMed  Google Scholar 

Nwachukwu N, et al. Evidence for altered DNA methylation as a major regulator of gene expression in calcific aortic valve disease (671.15). FASEB J. 2014;28(S1):15.

Article  Google Scholar 

Hadji F, et al. Altered DNA methylation of long noncoding RNA H19 in calcific aortic valve disease promotes mineralization by silencing NOTCH1. Circulation. 2016;134(23):1848–62.

Article  CAS  PubMed  Google Scholar 

Nasu T, et al. Epigenome-wide association study identifies a novel DNA methylation in patients with severe aortic valve stenosis. Circ Genom Precis Med. 2020;13(1):e002649.

Article  MathSciNet  PubMed  Google Scholar 

留言 (0)

沒有登入
gif