Role of Glucocorticoids in Metabolic Dysfunction-Associated Steatotic Liver Disease

•• Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79:1542–56. https://doi.org/10.1016/j.jhep.2023.06.003. This is the introductory consensus to the newest definition of the diseased, metabolic dysfunction-associated steatotic liver disease (MASLD), which is accompannied by new diagnostic criteria.

Article  CAS  PubMed  Google Scholar 

Makri E, Goulas A, Polyzos SA. Epidemiology, Pathogenesis, Diagnosis and Emerging Treatment of Nonalcoholic Fatty Liver Disease. Arch Med Res. 2021;52:25–37. https://doi.org/10.1016/j.arcmed.2020.11.010.

Article  CAS  PubMed  Google Scholar 

Li L, Liu DW, Yan HY, Wang ZY, Zhao SH, Wang B. Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies. Obes Rev. 2016;17:510–9. https://doi.org/10.1111/obr.12407.

Article  CAS  PubMed  Google Scholar 

Fazel Y, Koenig AB, Sayiner M, Goodman ZD, Younossi ZM. Epidemiology and natural history of nonalcoholic fatty liver disease. Metabolism. 2016;65:1017–25. https://doi.org/10.1016/j.metabol.2016.01.012.

Article  CAS  PubMed  Google Scholar 

Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism. 2019;92:82–97. https://doi.org/10.1016/j.metabol.2018.11.014.

Article  CAS  PubMed  Google Scholar 

Polyzos SA, Kountouras J, Zavos C. The multi-hit process and the antagonistic roles of tumor necrosis factor-alpha and adiponectin in nonalcoholic fatty liver disease. Hippokratia. 2009;13:127.

CAS  PubMed  PubMed Central  Google Scholar 

Makri ES, Makri E, Polyzos SA. Combination Therapies for Nonalcoholic Fatty Liver Disease. J Pers Med. 2022;12:1166. https://doi.org/10.3390/jpm12071166.

Article  PubMed  PubMed Central  Google Scholar 

Larrain S, Rinella ME. A myriad of pathways to NASH. Clin Liver Dis. 2012;16:525–48. https://doi.org/10.1016/j.cld.2012.05.009.

Article  PubMed  Google Scholar 

Farrell GC. Drugs and steatohepatitis. Semin Liver Dis. 2002;22:185–94. https://doi.org/10.1055/s-2002-30106.

Article  CAS  PubMed  Google Scholar 

Polyzos SA, Kountouras J, Zavos C. Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med. 2009;72:299–314. https://doi.org/10.2174/156652409787847191.

Article  Google Scholar 

Polyzos SA. Endocrine and metabolic disorders interplaying with non-alcoholic fatty liver disease. Minerva Endocrinol. 2017;42:89–91. https://doi.org/10.23736/S0391-1977.16.02576-1.

Article  PubMed  Google Scholar 

Polyzos SA, Kang ES, Tsochatzis EA, Kechagias S, Ekstedt M, Xanthakos S, et al. Commentary: Nonalcoholic or metabolic dysfunction-associated fatty liver disease? The epidemic of the 21st century in search of the most appropriate name. Metabolism. 2020;113:154413. https://doi.org/10.1016/j.metabol.2020.154413.

Article  CAS  PubMed  Google Scholar 

Pivonello R, De Leo M, Vitale P, Cozzolino A, Simeoli C, De Martino MC, et al. Pathophysiology of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology. 2010;92(Suppl 1):77–81. https://doi.org/10.1159/000314319.

Article  CAS  PubMed  Google Scholar 

Papanastasiou L, Fountoulakis S, Vatalas IA. Adrenal disorders and non-alcoholic fatty liver disease. Minerva Endocrinol. 2017;42:151–63. https://doi.org/10.23736/s0391-1977.16.02583-9.

Article  PubMed  Google Scholar 

Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet. 2015;386:913–27. https://doi.org/10.1016/s0140-6736(14)61375-1.

Article  CAS  PubMed  Google Scholar 

•• Polyzos SA, Kechagias S, Tsochatzis E. Review article: non-alcoholic fatty liver disease and cardiovascular diseases - associations and treatment considerations. Aliment Pharmacol Ther. 2021;54:1013–55. https://doi.org/10.1111/apt.16575. This is a review summarizing the close association of NAFLD with cardiovascular diseases, which refers to the first cause of death in patients with NAFLD.

Article  PubMed  Google Scholar 

Uehara M, Yamazaki H, Yoshikawa N, Kuribara-Souta A, Tanaka H. Correlation among body composition and metabolic regulation in a male mouse model of Cushing’s syndrome. Endocr J. 2020;67:21–30. https://doi.org/10.1507/endocrj.EJ19-0205.

Article  CAS  PubMed  Google Scholar 

Lemke U, Krones-Herzig A, Berriel Diaz M, Narvekar P, Ziegler A, Vegiopoulos A, et al. The glucocorticoid receptor controls hepatic dyslipidemia through Hes1. Cell Metab. 2008;8:212–23. https://doi.org/10.1016/j.cmet.2008.08.001.

Article  CAS  PubMed  Google Scholar 

Revollo JR, Oakley RH, Lu NZ, Kadmiel M, Gandhavadi M, Cidlowski JA. HES1 is a master regulator of glucocorticoid receptor-dependent gene expression. Sci Signal. 2013;6:ra103. https://doi.org/10.1126/scisignal.2004389.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Ferguson D, Hutson I, Tycksen E, Pietka TA, Bauerle K, Harris CA. Role of Mineralocorticoid Receptor in Adipogenesis and Obesity in Male Mice. Endocrinol. 2020;161:bqz010. https://doi.org/10.1210/endocr/bqz010. This study attributes a potential role to mineralocorticoid receptor and a mediator to metabolic dysfunction-associated steatotic liver disease (MASLD).

Article  CAS  Google Scholar 

Heaney AP, Harper R, Ennis C, Rooney DP, Sheridan B, Atkinson AB, et al. Insulin action and hepatic glucose cycling in Cushing’s syndrome. Clin Endocrinol (Oxf). 1997;46:735–43. https://doi.org/10.1046/j.1365-2265.1997.2121024.x.

Article  CAS  PubMed  Google Scholar 

Saad MJ, Folli F, Kahn JA, Kahn CR. Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats. J Clin Invest. 1993;92:2065–72. https://doi.org/10.1172/jci116803.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vander Kooi BT, Onuma H, Oeser JK, Svitek CA, Allen SR, Vander Kooi CW, et al. The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements. Mol Endocrinol. 2005;19:3001–22. https://doi.org/10.1210/me.2004-0497.

Article  CAS  PubMed  Google Scholar 

Chan TM. The permissive effects of glucocorticoid on hepatic gluconeogenesis. Glucagon stimulation of glucose-suppressed gluconeogenesis and inhibition of 6-phosphofructo-1-kinase in hepatocytes from fasted rats. J Biol Chem. 1984;259:7426–32.

Article  CAS  PubMed  Google Scholar 

Bollen M, Keppens S, Stalmans W. Specific features of glycogen metabolism in the liver. Biochem J. 1998;336:19–31. https://doi.org/10.1042/bj3360019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Margolis RN, Curnow RT. Effects of dexamethasone administration on hepatic glycogen synthesis and accumulation in adrenalectomized fasted rats. Endocrinology. 1984;115:625–9. https://doi.org/10.1210/endo-115-2-625.

Article  CAS  PubMed  Google Scholar 

Weinstein SP, Wilson CM, Pritsker A, Cushman SW. Dexamethasone inhibits insulin-stimulated recruitment of GLUT4 to the cell surface in rat skeletal muscle. Metabolism. 1998;47:3–6. https://doi.org/10.1016/s0026-0495(98)90184-6.

Article  CAS  PubMed  Google Scholar 

van Raalte DH, Nofrate V, Bunck MC, van Iersel T, Elassaiss Schaap J, Nässander UK, et al. Acute and 2-week exposure to prednisolone impair different aspects of beta-cell function in healthy men. Eur J Endocrinol. 2010;162:729–35. https://doi.org/10.1530/eje-09-1034.

Article  PubMed  Google Scholar 

Borboni P, Porzio O, Magnaterra R, Fusco A, Sesti G, Lauro R, et al. Quantitative analysis of pancreatic glucokinase gene expression in cultured beta cells by competitive polymerase chain reaction. Mol Cell Endocrinol. 1996;117:175–81. https://doi.org/10.1016/0303-7207(95)03745-4.

Article  CAS  PubMed  Google Scholar 

Gremlich S, Roduit R, Thorens B. Dexamethasone induces posttranslational degradation of GLUT2 and inhibition of insulin secretion in isolated pancreatic beta cells. Comparison with the effects of fatty acids. J Biol Chem. 1997;272:3216–22. https://doi.org/10.1074/jbc.272.6.3216.

Article  CAS  PubMed  Google Scholar 

Xu C, He J, Jiang H, Zu L, Zhai W, Pu S, et al. Direct effect of glucocorticoids on lipolysis in adipocytes. Mol Endocrinol. 2009;23:1161–70. https://doi.org/10.1210/me.2008-0464.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao X, Li H, Yang J, Qi X, Zu X, Yang J, et al. Wnt/β-catenin signaling pathway and lipolysis enzymes participate in methylprednisolone induced fat differential distribution between subcutaneous and visceral adipose tissue. Steroids. 2014;84:30–5. https://doi.org/10.1016/j.steroids.2014.03.004.

Article  CAS  PubMed  Google Scholar 

Wang Y, Yan C, Liu L, Wang W, Du H, Fan W, et al. 11β-Hydroxysteroid dehydrogenase type 1 shRNA ameliorates glucocorticoid-induced insulin resistance and lipolysis in mouse abdominal adipose tissue. Am J Physiol Endocrinol Metab. 2015;308:E84-95. https://doi.org/10.1152/ajpendo.00205.2014.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif