CAFs vs. TECs: when blood feuds fuel cancer progression, dissemination and therapeutic resistance

D. Hanahan, L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 21(3), 309–322 (2012). https://doi.org/10.1016/j.ccr.2012.02.022

Article  CAS  PubMed  Google Scholar 

L. Bejarano, M.J.C. Jordao, J.A. Joyce, Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11(4), 933–959 (2021). https://doi.org/10.1158/2159-8290.CD-20-1808

Article  CAS  PubMed  Google Scholar 

M. Egeblad, E.S. Nakasone, Z. Werb, Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell. 18(6), 884–901 (2010). https://doi.org/10.1016/j.devcel.2010.05.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Y. Chen, K.M. McAndrews, R. Kalluri, Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol. 18(12), 792–804 (2021). https://doi.org/10.1038/s41571-021-00546-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

R. Kalluri, The biology and function of fibroblasts in cancer. Nat. Rev. Cancer. 16(9), 582–598 (2016). https://doi.org/10.1038/nrc.2016.73

Article  CAS  PubMed  Google Scholar 

E. Sahai et al., A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer. 20(3), 174–186 (2020). https://doi.org/10.1038/s41568-019-0238-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

R. Lugano, M. Ramachandran, A. Dimberg, Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 77(9), 1745–1770 (2020). https://doi.org/10.1007/s00018-019-03351-7

Article  CAS  PubMed  Google Scholar 

D. Lavie et al., Cancer-associated fibroblasts in the single-cell era. Nat. Cancer. 3(7), 793–807 (2022). https://doi.org/10.1038/s43018-022-00411-z

Article  PubMed  PubMed Central  Google Scholar 

Z. Fang et al., Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives. Cancer Commun. (Lond). 43(1), 3–41 (2023). https://doi.org/10.1002/cac2.12392

Article  PubMed  Google Scholar 

H. Sanford-Crane, J. Abrego, M.H. Sherman, Fibroblasts as modulators of local and systemic cancer metabolism. Cancers. 11(5), 619 (2019). https://doi.org/10.3390/cancers11050619

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. Monteran, N. Erez, The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front. Immunol. 10, 1835 (2019). https://doi.org/10.3389/fimmu.2019.01835

Article  CAS  PubMed  PubMed Central  Google Scholar 

F.L. Miles, R.A. Sikes, Insidious changes in stromal matrix fuel cancer progression. Mol. Cancer Res. 12(3), 297–312 (2014). https://doi.org/10.1158/1541-7786.MCR-13-0535

Article  CAS  PubMed  PubMed Central  Google Scholar 

F. Calvo et al., Cdc42EP3/BORG2 and septin network enables mechano-transduction and the emergence of cancer-associated fibroblasts. Cell. Rep. 13(12), 2699–2714 (2015). https://doi.org/10.1016/j.celrep.2015.11.052

Article  CAS  PubMed  PubMed Central  Google Scholar 

F. Calvo et al., Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell. Biol. 15(6), 637–646 (2013). https://doi.org/10.1038/ncb2756

Article  CAS  PubMed  Google Scholar 

D.T. Butcher, T. Alliston, V.M. Weaver, A tense situation: forcing tumour progression. Nat. Rev. Cancer. 9(2), 108–122 (2009). https://doi.org/10.1038/nrc2544

Article  CAS  PubMed  PubMed Central  Google Scholar 

C. Gaggioli et al., Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell. Biol. 9(12), 1392–1400 (2007). https://doi.org/10.1038/ncb1658

Article  CAS  PubMed  Google Scholar 

M.J. Paszek et al., Tensional homeostasis and the malignant phenotype. Cancer Cell. 8(3), 241–254 (2005). https://doi.org/10.1016/j.ccr.2005.08.010

Article  MathSciNet  CAS  PubMed  Google Scholar 

M. Najafi, B. Farhood, K. Mortezaee, Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J. Cell. Biochem. 120(3), 2782–2790 (2019). https://doi.org/10.1002/jcb.27681

Article  CAS  PubMed  Google Scholar 

J. Linares et al., Determinants and functions of CAFs secretome during cancer progression and therapy. Front. Cell. Dev. Biol. 8, 621070 (2020). https://doi.org/10.3389/fcell.2020.621070

Article  PubMed  Google Scholar 

M.B. Meads, R.A. Gatenby, W.S. Dalton, Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat. Rev. Cancer. 9(9), 665–674 (2009). https://doi.org/10.1038/nrc2714

Article  CAS  PubMed  Google Scholar 

A.T. Krishnamurty et al., LRRC15(+) myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature. 611(7934), 148–154 (2022). https://doi.org/10.1038/s41586-022-05272-1

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

J.W. Astin et al., Competition amongst eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells. Nat. Cell. Biol. 12(12), 1194–1204 (2010). https://doi.org/10.1038/ncb2122

Article  CAS  PubMed  Google Scholar 

A. Labernadie et al., A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell. Biol. 19(3), 224–237 (2017). https://doi.org/10.1038/ncb3478

Article  CAS  PubMed  PubMed Central  Google Scholar 

D. Kerdidani et al., Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts. J. Exp. Med. 219(2), e20210815 (2022). https://doi.org/10.1084/jem.20210815

Article  CAS  PubMed  PubMed Central  Google Scholar 

H. Huang et al., Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 40(6), 656–673 (2022). https://doi.org/10.1016/j.ccell.2022.04.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Kraman et al., Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science. 330(6005), 827–830 (2010). https://doi.org/10.1126/science.1195300

Article  ADS  CAS  PubMed  Google Scholar 

B.C. Ozdemir et al., Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 25(6), 719–734 (2014). https://doi.org/10.1016/j.ccr.2014.04.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Y. Chen et al., Type I collagen deletion in alphaSMA(+) myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell. 39(4), 548–565 (2021). https://doi.org/10.1016/j.ccell.2021.02.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Bhattacharjee et al., Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J. Clin. Invest. 131(11), e146987 (2021). https://doi.org/10.1172/JCI146987

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Affo et al., Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell. 39(6), 866–882e811 (2021). https://doi.org/10.1016/j.ccell.2021.03.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

A. Filliol et al., Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature. 610(7931), 356–365 (2022). https://doi.org/10.1038/s41586-022-05289-6

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

A. Costa et al., Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 33(3), 463–479 (2018). https://doi.org/10.1016/j.ccell.2018.01.011

Article  CAS  PubMed 

留言 (0)

沒有登入
gif