Identification of cancer driver genes based on hierarchical weak consensus model

Vandin F, Upfal E, Raphael BJ. De novo discovery of mutated driver pathways in cancer. Genome Res. 2011.

Mclendon R, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

Article  ADS  CAS  Google Scholar 

Bobrow M, Zhao S. International network of cancer genome projects. Nature. 2010;464(7291):993–8.

Article  ADS  PubMed  Google Scholar 

Peng J, Xue H, Shao Y, Shang X, Wang Y, Chen J. A novel method to measure the semantic similarity of hpo terms. Int J Data Min Bioinform. 2017;17(2):173–88.

Article  Google Scholar 

Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458(7239):719–24.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Bashashati A, et al. DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biol. 2012;13(12):1–14.

Article  Google Scholar 

Shi K, Gao L, Wang B. Discovering potential cancer driver genes by an integrated network-based approach. Mol BioSyst. 2016;12(9):2921–31.

Article  CAS  PubMed  Google Scholar 

Tian R, Basu MK, Capriotti E. ContrastRank: a new method for ranking putative cancer driver genes and classification of tumor samples. Bioinformatics. 2014;30(17):i572–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dees ND, et al. MuSiC: identifying mutational significance in cancer genomes. Genome Res. 2012;22(8):1589–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lawrence MS, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Ding L, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455(7216):1069–75.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Pon JR, Marra MA. Driver and passenger mutations in cancer. Annu Rev Pathol. 2015;10:25–50.

Article  CAS  PubMed  Google Scholar 

Wendl MC, et al. PathScan: a tool for discerning mutational significance in groups of putative cancer genes. Bioinformatics. 2011;27(12):1595–602.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Youn A, Simon R. Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics. 2011;27(2):175–81.

Article  CAS  PubMed  Google Scholar 

Gatza ML, Silva GO, Parker JS, Fan C, Perou CM. An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer. Nat Genet. 2014;46(10):1051–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dimitrakopoulos CM, Beerenwinkel N. Computational approaches for the identification of cancer genes and pathways. Wiley Interdiscip Rev. 2017;9(1): e1364.

Google Scholar 

Martincorena I, et al. Universal patterns of selection in cancer and somatic tissues. Cell. 2017;171(5):1029–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Torti D, Trusolino L. Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med. 2011;3(11):623–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer. 2002;2(5):331–41.

Article  CAS  PubMed  Google Scholar 

Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. Creation of human tumour cells with defined genetic elements. Nature. 1999;400(6743):464–8.

Article  ADS  CAS  PubMed  Google Scholar 

Hou P, Ma J. DawnRank: discovering personalized driver genes in cancer. Genome Med. 2014;6:1–16.

Article  Google Scholar 

Xi J, Wang M, Li A. Discovering mutated driver genes through a robust and sparse co-regularized matrix factorization framework with prior information from mRNA expression patterns and interaction network. BMC Bioinform. 2018;19(1):1–14.

Article  Google Scholar 

Xi J, Wang M, Li A. Discovering potential driver genes through an integrated model of somatic mutation profiles and gene functional information. Mol BioSyst. 2017;13(10):2135–44.

Article  CAS  PubMed  Google Scholar 

Dimitrakopoulos C, et al. Network-based integration of multi-omics data for prioritizing cancer genes. Bioinformatics. 2018;34(14):2441–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song J, Peng W, Wang F. A random walk-based method to identify driver genes by integrating the subcellular localization and variation frequency into bipartite graph. BMC Bioinform. 2019;20(1):1–17.

Article  Google Scholar 

Song J, Peng W, Wang F. An entropy-based method for identifying mutual exclusive driver genes in cancer. IEEE/ACM Trans Comput Biol Bioinform. 2019;17(3):758–68.

Article  PubMed  Google Scholar 

Wei T, Fa B, Luo C, Johnston L, Zhang Y, Yu Z. An efficient and easy-to-use network-based integrative method of multi-omics data for cancer genes discovery. Front Genet. 2021;11: 613033.

Article  PubMed  PubMed Central  Google Scholar 

Wang C, Shi J, Cai J, Zhang Y, Zheng X, Zhang N. DriverRWH: discovering cancer driver genes by random walk on a gene mutation hypergraph. BMC Bioinform. 2022;23(1):1–19.

Article  Google Scholar 

Choudhury Y, et al. Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. J Clin Investig. 2012;122(11):4059–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stahlhut C, Slack FJ. MicroRNAs and the cancer phenotype: profiling, signatures and clinical implications. Genome Med. 2013;5:1–12.

Article  Google Scholar 

Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc Natl Acad Sci. 2004;101(9):2658–63.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Li M, Zhang H, Wang J-X, Pan Y. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Syst Biol. 2012;6:1–9.

Article  Google Scholar 

Xiao Q, Wang J, Peng X, Wu F-X. Detecting protein complexes from active protein interaction networks constructed with dynamic gene expression profiles. Proteome Sci. 2013;11(1):1–8.

Google Scholar 

Bhattacharyya A. On a measure of divergence between two statistical populations defined by their probability distribution. Bull Calcutta Math Soc. 1943;35:99–110.

MathSciNet  Google Scholar 

Tomczak K, Czerwińska P, Wiznerowicz M. Review The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol/Współczesna Onkologia. 2015;2015(1):68–77.

Article  Google Scholar 

Patil A, Nakamura H. HINT: a database of annotated protein-protein interactions and their homologs. Biophysics. 2005;1:21–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang H-Y, et al. miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res. 2020;48(D1):D148–54.

ADS  CAS  PubMed  Google Scholar 

Tate JG, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1):D941–7.

Article  CAS  PubMed  Google Scholar 

Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man(OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33(Suppl 1):D514–7.

CAS  PubMed  Google Scholar 

Ashburner M, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–61.

留言 (0)

沒有登入
gif