Duarte Y, Márquez-Miranda V, Miossec MJ, González-Nilo F. Integration of target discovery, drug discovery and drug delivery: a review on computational strategies. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(4):e1554. https://doi.org/10.1002/wnan.1554.
Gashaw I, Ellinghaus P, Sommer A, Asadullah K. What makes a good drug target? Drug Discov Today. 2011;16(23–24):1037–43. https://doi.org/10.1016/j.drudis.2011.09.007.
Csermely P, Agoston V, Pongor S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci. 2005;26(4):178–82. https://doi.org/10.1016/j.tips.2005.02.007.
Fan K, Cheng L, Li L. Artificial intelligence and machine learning methods in predicting anti-cancer drug combination effects. Briefings Bioinf. 2021;22(6):bbab271. https://doi.org/10.1093/bib/bbab271.
Mak K-K, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019;24(3):773–80. https://doi.org/10.1016/j.drudis.2018.11.014.
Li G, Lin P, Wang K, Gu C-C, Kusari S. Artificial intelligence-guided discovery of anticancer lead compounds from plants and associated microorganisms. Trends Cancer. 2022;8(1):65–80. https://doi.org/10.1016/j.trecan.2021.10.002.
Tolios A, De Las Rivas J, Hovig E, Trouillas P, Scorilas A, Mohr T. Computational approaches in cancer multidrug resistance research: identification of potential biomarkers, drug targets and drug-target interactions. Drug Res Updat: Rev Comment Antimicrob Anticancer Chemother. 2020;48:100662. https://doi.org/10.1016/j.drup.2019.100662.
Zhou Y, Zhang Y, Lian X, Li F, Wang C, Zhu F, Qiu Y, Chen Y. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2022;50(D1):D1398–407. https://doi.org/10.1093/nar/gkab953.
Wang L, Ding J, Pan L, Cao D, Jiang H, Ding X. Artificial intelligence facilitates drug design in the big data era. Chemom Intell Lab Syst. 2019;194:103850. https://doi.org/10.1016/j.chemolab.2019.103850.
Liu G, Xie Y, Sun Y, Zhang K, Ma J, Huang Y. Drug research and development opportunities in low- and middle-income countries: accelerating traditional medicine through systematic utilization and comprehensive synergy. Infect Dis Poverty. 2022;11(1):27. https://doi.org/10.1186/s40249-022-00954-4.
Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80–93. https://doi.org/10.1016/j.drudis.2020.10.010.
Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharmaceutica Sinica B. 2022;12(7):3049–62. https://doi.org/10.1016/j.apsb.2022.02.002.
Takebe T, Imai R, Ono S. The current status of drug discovery and development as originated in united states academia: the influence of industrial and academic collaboration on drug discovery and development. Clin Transl Sci. 2018;11(6):597–606. https://doi.org/10.1111/cts.12577.
Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13(6):419–31. https://doi.org/10.1038/nrd4309.
Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, Dharia NV, Montgomery PG, Cowley GS, Pantel S, Goodale A, Lee Y, Ali LD, Jiang G, Lubonja R, Harrington WF, Strickland M, Wu T, Hawes DC, Zhivich VA, Wyatt MR, Kalani Z, Chang JJ, Okamoto M, Stegmaier K, Golub TR, Boehm JS, Vazquez F, Root DE, Hahn WC, Tsherniak A. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49(12):1779–84. https://doi.org/10.1038/ng.3984.
Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, Wishart D. Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites. 2019;9(4):76. https://doi.org/10.3390/metabo9040076.
Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M, Kroemer G. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis. 2014;5(5):e1257–e1257. https://doi.org/10.1038/cddis.2013.428.
Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martínez C, Fulcher C, Huerta AM, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado L, Ong Q, Paley S, Schröder I, Shearer AG, Subhraveti P, Travers M, Weerasinghe D, Weiss V, Collado-Vides J, Gunsalus RP, Paulsen I, Karp PD. EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res. 2013;41(D1):D605–12. https://doi.org/10.1093/nar/gks1027.
Gogleva A, Polychronopoulos D, Pfeifer M, Poroshin V, Ughetto M, Martin MJ, Thorpe H, Bornot A, Smith PD, Sidders B, Dry JR, Ahdesmäki M, McDermott U, Papa E, Bulusu KC. Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer. Nat Commun. 2022;13(1):1667. https://doi.org/10.1038/s41467-022-29292-7.
Chandak P, Huang K, Zitnik M. Building a knowledge graph to enable precision medicine. Sci Data. 2023;10(1):1–16. https://doi.org/10.1038/s41597-023-01960-3.
Zador A, Escola S, Richards B, Ölveczky B, Bengio Y, Boahen K, Botvinick M, Chklovskii D, Churchland A, Clopath C, DiCarlo J, Ganguli S, Hawkins J, Körding K, Koulakov A, LeCun Y, Lillicrap T, Marblestone A, Olshausen B, Pouget A, Savin C, Sejnowski T, Simoncelli E, Solla S, Sussillo D, Tolias AS, Tsao D. Catalyzing next-generation artificial intelligence through NeuroAI. Nat Commun. 2023;14(1):1597.
Gupta RR. Application of artificial intelligence and machine learning in drug discovery. In: Heifetz A, editor. Artificial intelligence in drug design. New York: Springer; 2022. p. 113–24.
Sarkar C, Das B, Rawat VS, Wahlang JB, Nongpiur A, Tiewsoh I, Lyngdoh NM, Das D, Bidarolli M, Sony HT. Artificial intelligence and machine learning technology driven modern drug discovery and development. Int J Mol Sci. 2023;24(3):2026. https://doi.org/10.3390/ijms24032026.
Rashid MBMA. Artificial intelligence effecting a paradigm shift in drug development. SLAS Technol. 2021;26(1):3–15. https://doi.org/10.1177/2472630320956931.
Recanatini M, Cabrelle C. Drug research meets network science: where are we? J Med Chem. 2020;63(16):8653–66. https://doi.org/10.1021/acs.jmedchem.9b01989.
Li D, Hu J, Zhang L, Li L, Yin Q, Shi J, Guo H, Zhang Y, Zhuang P. Deep learning and machine intelligence: new computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of traditional Chinese medicine. Eur J Pharmacol. 2022;933:175260. https://doi.org/10.1016/j.ejphar.2022.175260.
She S, Chen H, Ji W, Sun M, Cheng J, Rui M, Feng C. Deep learning-based multi-drug synergy prediction model for individually tailored anti-cancer therapies. Front Pharmacol. 2022;13:1032875. https://doi.org/10.3389/fphar.2022.1032875.
Adams SA, Petersen C. Precision medicine: opportunities, possibilities, and challenges for patients and providers. J Am Med Inf Assoc. 2016;23(4):787–90. https://doi.org/10.1093/jamia/ocv215.
Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern. 1980;36(4):193–202. https://doi.org/10.1007/BF00344251.
Lipton Z. A critical review of recurrent neural networks for sequence learning. 2015.
Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527–54. https://doi.org/10.1162/neco.2006.18.7.1527.
Article MathSciNet Google Scholar
Gerstein M. ENCODE leads the way on big data. Nature. 2012;489(7415):208–208. https://doi.org/10.1038/489208b.
Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems—Volume 2, MIT Press: Montreal, Canada, 2014; pp 2672–2680.
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J., Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker PA, Vasudevan V, Warden P, Wicke M, Yu Y, Zhang X. In: TensorFlow: a system for large-scale machine learning, USENIX Symposium on Operating Systems Design and Implementation. 2016.
Ii B. The power of deep learning to ligand-based novel drug discovery. Expert Opin Drug Discov. 2020. https://doi.org/10.1080/17460441.2020.1745183.
Bonner S, Barrett IP, Ye C, Swiers R, Engkvist O, Hoyt CT, Hamilton WL. Understanding the performance of knowledge graph embeddings in drug discovery. Artif Intell Life Sci. 2022;2:100036. https://doi.org/10.1016/j.ailsci.2022.100036.
Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical AI. Nat Med. 2022;28(9):1773–84. https://doi.org/10.1038/s41591-022-01981-2.
Kırboğa KK, Abbasi S, Küçüksille EU. Explainability and white box in drug discovery. Chem Biol Drug Des. 2023;102(1):217–33. https://doi.org/10.1111/cbdd.14262.
Zongsheng W, Xue R, Shao M. Knowledge graph analysis and visualization of AI technology applied in COVID-19. Environ Sci Pollut Res Int. 2022. https://doi.org/10.1007/s11356-021-17800-z.
留言 (0)