A lightweight network based on multi-feature pseudo-color mapping for arrhythmia recognition

Organization WH. Cardiovascular diseases (CVDs). https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 15 April 2024.

Organisation WH. Uses of the electrocardiogram. EURO reports and studies, vol. 37. Regional Office for Europe, Copenhagen (1981). Report on a WHO study; project ICP/ATH 003

He J, Sun L, Rong J, Wang H, Zhang Y. A pyramid-like model for heartbeat classification from ECG recordings. PLoS One. 2018;13(11):0206593. https://doi.org/10.1371/journal.pone.0206593.

Article  Google Scholar 

Luz EJ, Schwartz WR, vez G, Menotti D. ECG-based heartbeat classification for arrhythmia detection: a survey. Comput Methods Programs Biomed. 2016;127:144–64. https://doi.org/10.1016/j.cmpb.2015.12.008.

Article  Google Scholar 

Martis RJ, Acharya UR, Ray AK, Chakraborty C. Application of higher order cumulants to ECG signals for the cardiac health diagnosis. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1697–700. https://doi.org/10.1109/IEMBS.2011.6090487.

Article  Google Scholar 

Thilagavathy R, Srivatsan R, Sreekarun S, Sudeshna D, Priya PL, Venkataramani B. Real-time ecg signal feature extraction and classification using support vector machine. 2020 Int Conf Contemp Comput Appl (IC3A). 2020. https://doi.org/10.1109/IC3A48958.2020.233266.

Article  Google Scholar 

Yang P, Wang D, Zhao W-B, Fu L-H, Du J-L, Su H. Ensemble of kernel extreme learning machine based random forest classifiers for automatic heartbeat classification. Biomed Signal Proc Control. 2021;63:102138. https://doi.org/10.1016/j.bspc.2020.102138.

Article  Google Scholar 

Wang J. Automated detection of atrial fibrillation and atrial flutter in ecg signals based on convolutional and improved elman neural network. Knowl-Based Syst. 2020;193:105446. https://doi.org/10.1016/j.knosys.2019.105446.

Article  Google Scholar 

Xin H, Chen Z, Zhuo H, Qinghui C, Shaojie T, Jinshan T, Weihua Z. A novel method for ECG signal classification via one-dimensional convolutional neural network. Multimed Syst. 2020;28:1387–99. https://doi.org/10.1007/s00530-020-00713-1.

Article  Google Scholar 

Hasan NI, Bhattacharjee A. Deep learning approach to cardiovascular disease classification employing modified ECG signal from empirical mode decomposition. Biomed Signal Process Control. 2019;52:128–40. https://doi.org/10.1016/j.bspc.2019.04.005.

Article  Google Scholar 

Li X, Zhang F, Sun Z, Li D, Kong X, Zhang Y. Automatic heartbeat classification using s-shaped reconstruction and a squeeze-and-excitation residual network. Comput Biol Med. 2022. https://doi.org/10.1016/j.compbiomed.2021.105108.

Article  Google Scholar 

Li Y, Zhang L, Zhu L, Liu L, Han B, Zhang Y, Wei S. Diagnosis of atrial fibrillation using self-complementary attentional convolutional neural network. Comput Methods Programs Biomed. 2023;238:107565. https://doi.org/10.1016/j.cmpb.2023.107565.

Article  Google Scholar 

Mathunjwa BM, Lin YT, Lin CH, Abbod MF, Sadrawi M, Shieh JS. ECG recurrence plot-based arrhythmia classification using two-dimensional deep residual CNN features. Sensors (Basel). 2022. https://doi.org/10.3390/s22041660.

Article  Google Scholar 

Zhang Y, Li J, Wei S, Zhou F, Li D. Heartbeats classification using hybrid time-frequency analysis and transfer learning based on ResNet. IEEE J Biomed Health Inform. 2021;25(11):4175–84. https://doi.org/10.1109/JBHI.2021.3085318.

Article  Google Scholar 

Ma N, Zhang X, Zheng H-T, Sun J. ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer vision—ECCV. Cham: Springer; 2018. p. 122–38.

Google Scholar 

Frintrop S. Computational visual attention. London: Springer; 2011. p. 69–101. https://doi.org/10.1007/978-0-85729-994-9_4.

Book  Google Scholar 

Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag. 2001;20(3):45–50. https://doi.org/10.1109/51.932724.

Article  Google Scholar 

Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):215–20. https://doi.org/10.1161/01.cir.101.23.e215.

Article  Google Scholar 

Singh BN, Tiwari AK. Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Processing. 2006;16(3):275–87. https://doi.org/10.1016/J.DSP.2005.12.003.

Article  Google Scholar 

Wang J-S, Chiang W-C, Yang Y-TC, Hsu Y-L. An effective ECG arrhythmia classification algorithm. In: Huang D-S, Gan Y, Premaratne P, Han K, editors. Bio-inspired computing and applications. Berlin: Springer; 2012. p. 545–50. https://doi.org/10.1007/978-3-642-24553-4_72.

Chapter  Google Scholar 

Acharya UR, Krishnan SM. Advances in cardiac recording processing. Cham: Springer; 2007.

Book  Google Scholar 

El-Saadawy H, Tantawi M, Shedeed HA, Tolba MF. Hybrid hierarchical method for electrocardiogram heartbeat classification. IET Signal Process. 2018;12(4):506–13. https://doi.org/10.1049/iet-spr.2017.0108.

Article  Google Scholar 

Shaker AM, Tantawi M, Shedeed HA, Tolba MF. Generalization of convolutional neural networks for ecg classification using generative adversarial networks. IEEE Access. 2020;8:35592–605. https://doi.org/10.1109/ACCESS.2020.2974712.

Article  Google Scholar 

Tao Y, Yue G, Wang K, Zhang Y, Jiang B. A cascaded step-temporal attention network for ECG arrhythmia classification. Int Joint Conf Neural Netw. 2020. https://doi.org/10.1109/IJCNN48605.2020.9206890.

Article  Google Scholar 

Kuila S, Dhanda N, Joardar S. Ecg signal classification and arrhythmia detection using elm-rnn. Multimed Tools Appl. 2022;81:25233–49. https://doi.org/10.1007/s11042-022-11957-6.

Article  Google Scholar 

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2015. https://doi.org/10.48550/arXiv.1512.03385

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. 2015 IEEE Conf Comput Vision Pattern Recognit (CVPR). 2015. https://doi.org/10.1109/CVPR.2015.7298594.

Article  Google Scholar 

Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. 2016 IEEE Conf Comput Vision Pattern Recognit (CVPR). 2016. https://doi.org/10.1109/CVPR.2016.319.

Article  Google Scholar 

Liu Y, Ji L, Huang R, Ming T, Gao C, Zhang J. An attention-gated convolutional neural network for sentence classification. 2018. https://doi.org/10.48550/arXiv.1808.07325

留言 (0)

沒有登入
gif