Organization WH. Cardiovascular diseases (CVDs). https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 15 April 2024.
Organisation WH. Uses of the electrocardiogram. EURO reports and studies, vol. 37. Regional Office for Europe, Copenhagen (1981). Report on a WHO study; project ICP/ATH 003
He J, Sun L, Rong J, Wang H, Zhang Y. A pyramid-like model for heartbeat classification from ECG recordings. PLoS One. 2018;13(11):0206593. https://doi.org/10.1371/journal.pone.0206593.
Luz EJ, Schwartz WR, vez G, Menotti D. ECG-based heartbeat classification for arrhythmia detection: a survey. Comput Methods Programs Biomed. 2016;127:144–64. https://doi.org/10.1016/j.cmpb.2015.12.008.
Martis RJ, Acharya UR, Ray AK, Chakraborty C. Application of higher order cumulants to ECG signals for the cardiac health diagnosis. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1697–700. https://doi.org/10.1109/IEMBS.2011.6090487.
Thilagavathy R, Srivatsan R, Sreekarun S, Sudeshna D, Priya PL, Venkataramani B. Real-time ecg signal feature extraction and classification using support vector machine. 2020 Int Conf Contemp Comput Appl (IC3A). 2020. https://doi.org/10.1109/IC3A48958.2020.233266.
Yang P, Wang D, Zhao W-B, Fu L-H, Du J-L, Su H. Ensemble of kernel extreme learning machine based random forest classifiers for automatic heartbeat classification. Biomed Signal Proc Control. 2021;63:102138. https://doi.org/10.1016/j.bspc.2020.102138.
Wang J. Automated detection of atrial fibrillation and atrial flutter in ecg signals based on convolutional and improved elman neural network. Knowl-Based Syst. 2020;193:105446. https://doi.org/10.1016/j.knosys.2019.105446.
Xin H, Chen Z, Zhuo H, Qinghui C, Shaojie T, Jinshan T, Weihua Z. A novel method for ECG signal classification via one-dimensional convolutional neural network. Multimed Syst. 2020;28:1387–99. https://doi.org/10.1007/s00530-020-00713-1.
Hasan NI, Bhattacharjee A. Deep learning approach to cardiovascular disease classification employing modified ECG signal from empirical mode decomposition. Biomed Signal Process Control. 2019;52:128–40. https://doi.org/10.1016/j.bspc.2019.04.005.
Li X, Zhang F, Sun Z, Li D, Kong X, Zhang Y. Automatic heartbeat classification using s-shaped reconstruction and a squeeze-and-excitation residual network. Comput Biol Med. 2022. https://doi.org/10.1016/j.compbiomed.2021.105108.
Li Y, Zhang L, Zhu L, Liu L, Han B, Zhang Y, Wei S. Diagnosis of atrial fibrillation using self-complementary attentional convolutional neural network. Comput Methods Programs Biomed. 2023;238:107565. https://doi.org/10.1016/j.cmpb.2023.107565.
Mathunjwa BM, Lin YT, Lin CH, Abbod MF, Sadrawi M, Shieh JS. ECG recurrence plot-based arrhythmia classification using two-dimensional deep residual CNN features. Sensors (Basel). 2022. https://doi.org/10.3390/s22041660.
Zhang Y, Li J, Wei S, Zhou F, Li D. Heartbeats classification using hybrid time-frequency analysis and transfer learning based on ResNet. IEEE J Biomed Health Inform. 2021;25(11):4175–84. https://doi.org/10.1109/JBHI.2021.3085318.
Ma N, Zhang X, Zheng H-T, Sun J. ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer vision—ECCV. Cham: Springer; 2018. p. 122–38.
Frintrop S. Computational visual attention. London: Springer; 2011. p. 69–101. https://doi.org/10.1007/978-0-85729-994-9_4.
Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag. 2001;20(3):45–50. https://doi.org/10.1109/51.932724.
Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):215–20. https://doi.org/10.1161/01.cir.101.23.e215.
Singh BN, Tiwari AK. Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Processing. 2006;16(3):275–87. https://doi.org/10.1016/J.DSP.2005.12.003.
Wang J-S, Chiang W-C, Yang Y-TC, Hsu Y-L. An effective ECG arrhythmia classification algorithm. In: Huang D-S, Gan Y, Premaratne P, Han K, editors. Bio-inspired computing and applications. Berlin: Springer; 2012. p. 545–50. https://doi.org/10.1007/978-3-642-24553-4_72.
Acharya UR, Krishnan SM. Advances in cardiac recording processing. Cham: Springer; 2007.
El-Saadawy H, Tantawi M, Shedeed HA, Tolba MF. Hybrid hierarchical method for electrocardiogram heartbeat classification. IET Signal Process. 2018;12(4):506–13. https://doi.org/10.1049/iet-spr.2017.0108.
Shaker AM, Tantawi M, Shedeed HA, Tolba MF. Generalization of convolutional neural networks for ecg classification using generative adversarial networks. IEEE Access. 2020;8:35592–605. https://doi.org/10.1109/ACCESS.2020.2974712.
Tao Y, Yue G, Wang K, Zhang Y, Jiang B. A cascaded step-temporal attention network for ECG arrhythmia classification. Int Joint Conf Neural Netw. 2020. https://doi.org/10.1109/IJCNN48605.2020.9206890.
Kuila S, Dhanda N, Joardar S. Ecg signal classification and arrhythmia detection using elm-rnn. Multimed Tools Appl. 2022;81:25233–49. https://doi.org/10.1007/s11042-022-11957-6.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2015. https://doi.org/10.48550/arXiv.1512.03385
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. 2015 IEEE Conf Comput Vision Pattern Recognit (CVPR). 2015. https://doi.org/10.1109/CVPR.2015.7298594.
Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. 2016 IEEE Conf Comput Vision Pattern Recognit (CVPR). 2016. https://doi.org/10.1109/CVPR.2016.319.
Liu Y, Ji L, Huang R, Ming T, Gao C, Zhang J. An attention-gated convolutional neural network for sentence classification. 2018. https://doi.org/10.48550/arXiv.1808.07325
留言 (0)