Neoadjuvant anthracycline-based (5-FEC) or anthracycline-free (docetaxel/carboplatin) chemotherapy plus trastuzumab and pertuzmab in HER2 + BC patients according to their TOP2A: a multicentre, open-label, non-randomized phase II trial

Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

Article  ADS  CAS  PubMed  Google Scholar 

Cobleigh MA, Vogel CL, Tripathy D et al (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17:2639–2648. https://doi.org/10.1200/JCO.1999.17.9.2639

Article  CAS  PubMed  Google Scholar 

Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672. https://doi.org/10.1056/NEJMoa052306

Article  CAS  PubMed  Google Scholar 

Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684. https://doi.org/10.1056/NEJMoa052122

Article  CAS  PubMed  Google Scholar 

Slamon D, Eiermann W, Robert N et al (2011) Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 365:1273–1283. https://doi.org/10.1056/NEJMoa0910383

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buzdar AU, Ibrahim NK, Francis D et al (2005) Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 23:3676–3685. https://doi.org/10.1200/JCO.2005.07.032

Article  CAS  PubMed  Google Scholar 

Gianni L, Eiermann W, Semiglazov V et al (2010) Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 375:377–384. https://doi.org/10.1016/S0140-6736(09)61964-4

Article  CAS  PubMed  Google Scholar 

Pierga J-Y, Delaloge S, Espié M et al (2010) A multicenter randomized phase II study of sequential epirubicin/cyclophosphamide followed by docetaxel with or without celecoxib or trastuzumab according to HER2 status, as primary chemotherapy for localized invasive breast cancer patients. Breast Cancer Res Treat 122:429–437. https://doi.org/10.1007/s10549-010-0939-3

Article  CAS  PubMed  Google Scholar 

Untch M, Rezai M, Loibl S et al (2010) Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: results from the GeparQuattro study. J Clin Oncol 28:2024–2031. https://doi.org/10.1200/JCO.2009.23.8451

Article  CAS  PubMed  Google Scholar 

Gianni L, Pienkowski T, Im Y-H et al (2012) Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 13:25–32. https://doi.org/10.1016/S1470-2045(11)70336-9

Article  CAS  PubMed  Google Scholar 

Schneeweiss A, Chia S, Hickish T et al (2013) Pertuzumab plus Trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol 24:2278–2284. https://doi.org/10.1093/annonc/mdt182

Article  CAS  PubMed  Google Scholar 

Cuello M, Ettenberg SA, Clark AS et al (2001) Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res 61:4892–4900

CAS  PubMed  Google Scholar 

Franklin MC, Carey KD, Vajdos FF et al (2004) Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5:317–328. https://doi.org/10.1016/s1535-6108(04)00083-2

Article  CAS  PubMed  Google Scholar 

Järvinen TAH, Liu ET (2006) Simultaneous amplification of HER-2 (ERBB2) and topoisomerase IIalpha (TOP2A) genes–molecular basis for combination chemotherapy in cancer. Curr Cancer Drug Targets 6:579–602. https://doi.org/10.2174/156800906778742497

Article  PubMed  Google Scholar 

Scandinavian Breast Group Trial 9401, Tanner M, Isola J et al (2006) Topoisomerase IIalpha gene amplification predicts favorable treatment response to tailored and dose-escalated anthracycline-based adjuvant chemotherapy in HER-2/neu-amplified breast cancer: scandinavian breast Group Trial 9401. J Clin Oncol 24:2428–2436. https://doi.org/10.1200/JCO.2005.02.9264

Article  CAS  Google Scholar 

Konecny GE, Pauletti G, Untch M et al (2010) Association between HER2, TOP2A, and response to anthracycline-based preoperative chemotherapy in high-risk primary breast cancer. Breast Cancer Res Treat 120:481–489. https://doi.org/10.1007/s10549-010-0744-z

Article  CAS  PubMed  Google Scholar 

Press MF, Sauter G, Buyse M et al (2011) Alteration of topoisomerase II-alpha gene in human breast cancer: association with responsiveness to anthracycline-based chemotherapy. J Clin Oncol 29:859–867. https://doi.org/10.1200/JCO.2009.27.5644

Article  CAS  PubMed  Google Scholar 

O’Malley FP, Chia S, Tu D et al (2009) Topoisomerase II alpha and responsiveness of breast cancer to adjuvant chemotherapy. J Natl Cancer Inst 101:644–650. https://doi.org/10.1093/jnci/djp067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knoop AS, Knudsen H, Balslev E et al (2005) Retrospective Analysis of Topoisomerase IIa Amplifications and deletions as predictive markers in primary breast Cancer patients randomly assigned to Cyclophosphamide, Methotrexate, and Fluorouracil or Cyclophosphamide, Epirubicin, and Fluorouracil: Danish breast Cancer Cooperative Group. JCO 23:7483–7490. https://doi.org/10.1200/JCO.2005.11.007

Article  CAS  Google Scholar 

Withoff S, Keith WN, Knol AJ et al (1996) Selection of a subpopulation with fewer DNA topoisomerase II alpha gene copies in a doxorubicin-resistant cell line panel. Br J Cancer 74:502–507. https://doi.org/10.1038/bjc.1996.393

Article  CAS  PubMed  PubMed Central  Google Scholar 

Järvinen TA, Tanner M, Rantanen V et al (2000) Amplification and deletion of topoisomerase IIalpha associate with ErbB-2 amplification and affect sensitivity to topoisomerase II inhibitor doxorubicin in breast cancer. Am J Pathol 156:839–847

Article  PubMed  PubMed Central  Google Scholar 

Tsai-Pflugfelder M, Liu LF, Liu AA et al (1988) Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22. Proc Natl Acad Sci U S A 85:7177–7181. https://doi.org/10.1073/pnas.85.19.7177

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Gao H-F, Wu Z, Lin Y et al (2021) Anthracycline-containing versus carboplatin-containing neoadjuvant chemotherapy in combination with trastuzumab for HER2-positive breast cancer: the neoCARH phase II randomized clinical trial. Ther Adv Med Oncol 13:17588359211009003. https://doi.org/10.1177/17588359211009003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Yu Y, Lin Y et al (2021) Efficacy and safety of neoadjuvant therapy for HER2-positive early breast cancer: a network meta-analysis. Ther Adv Med Oncol 13:17588359211006948. https://doi.org/10.1177/17588359211006948

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chevallier B, Roche H, Olivier JP et al (1993) Inflammatory breast cancer. Pilot study of intensive induction chemotherapy (FEC-HD) results in a high histologic response rate. Am J Clin Oncol 16:223–228

Article  CAS  PubMed  Google Scholar 

Fleming TR (1982) One-sample multiple testing procedure for phase II clinical trials. Biometrics 38:143–151

Article  CAS  PubMed  Google Scholar 

Cortazar P, Zhang L, Untch M et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384:164–172. https://doi.org/10.1016/S0140-6736(13)62422-8

Article  PubMed  Google Scholar 

de Azambuja E, Holmes AP, Piccart-Gebhart M et al (2014) Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol 15:1137–1146. https://doi.org/10.1016/S1470-2045(14)70320-1

Article  CAS  PubMed  Google Scholar 

Curigliano G, Burstein HJ, Winer EP et al (2017) De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the primary therapy of early breast Cancer 2017. Ann Oncol 28:1700–1712. https://doi.org/10.1093/annonc/mdx308

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seidman A, Hudis C, Pierri MK et al (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20:1215–1221

Article  CAS  PubMed  Google Scholar 

Le D, Vargo C, Collins S et al (2022) Impact of dose intensity on pathologic complete response rate in HER2-Positive breast Cancer patients receiving Neoadjuvant Docetaxel, Carboplatin, Trastuzumab and Pertuzumab (TCHP). Target Oncol 17:167–175. https://doi.org/10.1007/s11523-022-00874-1

Article  PubMed  Google Scholar 

De Coninck J, null, D’Ortona U, Koplik J, Banavar JR (1995) Terraced spreading of chain molecules via molecular dynamics. Phys Rev Lett 74:928–931. https://doi.org/10.1103/PhysRevLett.74.928

留言 (0)

沒有登入
gif