Synthesis, urease inhibitory and anticancer evaluation of glucosamine-sulfonylurea conjugates

Callahan BP, Yuan Y, Wolfenden R. The burden borne by urease. J Am Chem Soc. 2005;127:10828–9. https://doi.org/10.1021/ja0525399

Article  CAS  Google Scholar 

Rutherford JC. The emerging role of urease as a general microbial virulence factor. PLoS Pathogens. 2014;10:e1004062 https://doi.org/10.1371/journal.ppat.1004062

Article  CAS  Google Scholar 

Song W-Q, Liu M-L, Li S-Y, Xiao Z-P. Recent efforts in the discovery of urease inhibitor identifications. Curr Top Med Chem. 2022;22:95–7. https://doi.org/10.2174/1568026621666211129095441

Article  CAS  Google Scholar 

Svane S, Sigurdarson JJ, Finkenwirth F, Eitinger T, Karring H. Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci Rep. 2020;10:8503 https://doi.org/10.1038/s41598-020-65107-9

Article  CAS  Google Scholar 

Sohrabi M, Nazari Montazer M, Farid SM, Tanideh N, Dianatpour M, Moazzam A, et al. Design and synthesis of novel nitrothiazolacetamide conjugated to different thioquinazolinone derivatives as anti-urease agents. Sci Rep. 2022;12:2003 https://doi.org/10.1038/s41598-022-05736-4

Article  CAS  Google Scholar 

Hamad A, Khan MA, Rahman KM, Ahmad I, Ul-Haq Z, Khan S, et al. Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorg Chem. 2020;102:104057 https://doi.org/10.1016/j.bioorg.2020.104057

Article  CAS  Google Scholar 

Bury‐Moné S, Skouloubris S, Labigne A, De Reuse H. The Helicobacter pylori UreI protein: role in adaptation to acidity and identification of residues essential for its activity and for acid activation. Mol Microbiol. 2001;42:1021–34. https://doi.org/10.1046/j.1365-2958.2001.02689.x

Article  Google Scholar 

Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80:629–61. https://doi.org/10.1128/mmbr.00078-15

Article  CAS  Google Scholar 

Rosenstein IJ, Hamilton-Miller J, Musher DM. Inhibitors of urease as chemotherapeutic agents. CRC Crit Rev Microbiol. 1984;11:1–12

Article  CAS  Google Scholar 

Kafarski P, Talma M. Recent advances in design of new urease inhibitors: A review. J Adv Res. 2018;13:101–12. https://doi.org/10.1016/j.jare.2018.01.007

Article  CAS  Google Scholar 

Noreen M, Rasool N, Gull Y, Zubair M, Mahmood T, Ayub K, et al. Synthesis, density functional theory (DFT), urease inhibition and antimicrobial activities of 5-aryl thiophenes bearing sulphonylacetamide moieties. Mol. 2015;20:19914–28. https://doi.org/10.3390/molecules201119661

Article  CAS  Google Scholar 

Bailie N, Osborne C, Leininger J, Fletcher T, Johnston S, Ogburn P, et al. Teratogenic effect of acetohydroxamic acid in clinically normal beagles. Am J Vet Res. 1986;47:2604–11

CAS  Google Scholar 

Prakash O, Bachan Upadhyay LS. Acetohydroxamate inhibition of the activity of urease from dehusked seeds of water melon (Citrullus vulgaris). J Enz Inh Med Chem. 2004;19:381–7. https://doi.org/10.1080/14756360409162454

Article  CAS  Google Scholar 

Shi W-K, Deng R-C, Wang P-F, Yue Q-Q, Liu Q, Ding K-L, et al. 3-Arylpropionylhydroxamic acid derivatives as Helicobacter pylori urease inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg Med Chem. 2016;24:4519–27. https://doi.org/10.1016/j.bmc.2016.07.052

Article  CAS  Google Scholar 

Mamidala R, Bhimathati SRS, Vema A. Discovery of Novel Dihydropyrimidine and hydroxamic acid hybrids as potent Helicobacter pylori Urease inhibitors. Bioorg Chem. 2021;114:105010 https://doi.org/10.1016/j.bioorg.2021.105010

Article  CAS  Google Scholar 

Rezaei EB, Abedinifar F, Azizian H, Montazer MN, Asadi M, Hosseini S, et al. Design, synthesis, and evaluation of metronidazole-1, 2, 3-triazole derivatives as potent urease inhibitors. Chem Pap. 2021;75:4217–26

Article  CAS  Google Scholar 

Khan M, Khan KM, Parveen S, Shaikh M, Fatima N, Choudhary MI. Syntheses, in vitro urease inhibitory activities of urea and thiourea derivatives of tryptamine, their molecular docking and cytotoxic studies. Bioorg Chem. 2019;83:595–10. https://doi.org/10.1007/s11696-021-01653-4

Article  CAS  Google Scholar 

Ahmed A, Saeed A, Ali OM, El-Bahy ZM, Channar PA, Khurshid A, et al. Exploring amantadine derivatives as urease inhibitors: Molecular docking and structure–activity relationship (SAR) studies. Mol. 2021;26:7150 https://doi.org/10.3390/molecules26237150

Article  CAS  Google Scholar 

Todd MJ, Hausinger RP. Fluoride inhibition of Klebsiella aerogenes urease: mechanistic implications of a pseudo-uncompetitive, slow-binding inhibitor. Biochem. 2000;39:5389–96. https://doi.org/10.1021/bi992287m

Article  CAS  Google Scholar 

Benini S, Cianci M, Mazzei L, Ciurli S. Fluoride inhibition of Sporosarcina pasteurii urease: structure and thermodynamics. JBIC J Biol Inog Chem. 2014;19:1243–61. https://doi.org/10.1007/s00775-014-1182-x

Article  CAS  Google Scholar 

Mohammed A, Suaifan GARY, Shehadeh MB, Okechukwu PN. Design, synthesis and biological evaluation of 1, 8-naphthyridine glucosamine conjugates as antimicrobial agents. Drug Dev Res. 2019;80:179–86. https://doi.org/10.1002/ddr.21508

Article  CAS  Google Scholar 

Suaifan GA, Shehadeh MB, Darwish RM, Al-Ijel H, Abbate V. Design, synthesis and in vivo evaluation of novel glycosylated sulfonylureas as antihyperglycemic agents. Mol. 2015;20:20063–78. https://doi.org/10.3390/molecules201119676

Article  CAS  Google Scholar 

Mohammed AA, Suaifan GA, Shehadeh MB, Okechukwu PN. Design, synthesis and antimicrobial evaluation of novel glycosylated-fluoroquinolones derivatives. Eur J Med Chem. 2020;202:112513 https://doi.org/10.1016/j.ejmech.2020.112513

Article  CAS  Google Scholar 

Zahedipour F, Dalirfardouei R, Karimi G, Jamialahmadi K. Molecular mechanisms of anticancer effects of Glucosamine. Biomed Pharmacor. 2017;95:1051–8. https://doi.org/10.1016/j.biopha.2017.08.12226

Article  CAS  Google Scholar 

Chen Q, Yang F, Du Y. Synthesis of a C3-symmetric (1→6)-N-acetyl-β-D-glucosamine octadecasaccharide using click chemistry. Car Res. 2005;340:2476–82. https://doi.org/10.1016/j.carres.2005.08.013

Article  CAS  Google Scholar 

Konda S, Raparthi S, Bhaskar K, Munaganti RK, Guguloth V, Nagarapu L, et al. Synthesis and antimicrobial activity of novel benzoxazine sulfonamide derivatives. Bioorg Med Chem Lett. 2015;25:1643–6. https://doi.org/10.1016/j.bmcl.2015.01.026

Article  CAS  Google Scholar 

Lal J, Gupta SK, Thavaselvam D, Agarwal DD. Biological activity, design, synthesis and structure activity relationship of some novel derivatives of curcumin containing sulfonamides. Euro J Med Chem. 2013;64:579–88. https://doi.org/10.1016/j.ejmech.2013.03.012

Article  CAS  Google Scholar 

Abbas A, Murtaza S, Tahir MN, Shamim S, Sirajuddin M, Rana UA, et al. Synthesis, antioxidant, enzyme inhibition and DNA binding studies of novel N-benzylated derivatives of sulfonamide. J Mol Struct. 2016;1117:269–75. https://doi.org/10.1016/j.molstruc.2016.03.066

Article  CAS  Google Scholar 

Kennedy JF, Thorley M. Pharmaceutical Substances. In: Kleeman A, Engel J, Kutscher B, Reichert George D, eds. Bioseparation. 3rd Ed. Stuttgart/New York: Thiele Verlag; 1999. p. 2286. 10.1023/A:1008114712553

Google Scholar 

Suaifan GARY, Goodyer CL, Threadgill MD. Synthesis of N-(methoxycarbonylthienylmethyl) thioureas and evaluation of their interaction with inducible and neuronal nitric oxide synthase. Molecules. 2010;15:3121–34

Article  CAS  Google Scholar 

Ghorab MM, Alsaid MS, El-Gaby MS, Safwat NA, Elaasser MM, Soliman AM. Biological evaluation of some new N-(2, 6-dimethoxypyrimidinyl) thioureido benzenesulfonamide derivatives as potential antimicrobial and anticancer agents. Euro J Med Chem. 2016;124:299–10. https://doi.org/10.1016/j.ejmech.2016.08.060

Article  CAS  Google Scholar 

Wan Y, Fang G, Chen H, Deng X, Tang Z. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Euro J Med Chem. 2021;226:113837 https://doi.org/10.1016/j.ejmech.2021.113837

Article  CAS  Google Scholar 

Ma T, Fuld AD, Rigas JR, Hagey AE, Gordon GB, Dmitrovsky E, et al. A phase I trial and in vitro studies combining ABT-751 with carboplatin in previously treated non-small cell lung cancer patients. Chemotherapy. 2012;58:321–9. https://doi.org/10.1159/000343165

Article  CAS  Google Scholar 

Rauf MK, Badshah A, Gielen M, Ebihara M, de Vos D. Ahmed S. Synthesis, structural characterization and in vitro cytotoxicity and anti-bacterial activity of some copper (I) complexes with N, N′-disubstituted thioureas. J Inorg Biochem. 2009;103:1135–44. https://doi.org/10.1016/j.jinorgbio.2009.05.014

Article  CAS  Google Scholar 

Yaseen S, Rauf MK, Zaib S, Badshah A, Tahir MN, Ali MI, et al. Synthesis, characterization and urease inhibition, in vitro anticancer and antileishmanial studies of Co (III) complexes with N, N, N′-trisubstituted acylthioureas. Inorganica Chim. 2016;443:69–77. https://doi.org/10.1016/j.ica.2015.12.027

Article  CAS  Google Scholar 

Myszka H, Bednarczyk D, Najder M, Kaca W. Synthesis and induction of apoptosis in B cell chronic leukemia by diosgenyl 2-amino-2-deoxy-β-D-glucopyranoside hydrochloride and its derivatives. Carbohyd Res. 2003;338:133–41. https://doi.org/10.1016/S0008-6215(02)00407-X

Article  CAS  Google Scholar 

Weatherburn M. Phenol-hypochlorite reaction for determination of ammonia. Anal Chem. 1967;39:971–4. https://doi.org/10.1021/ac60252a045

Article  CAS  Google Scholar 

Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S. The complex of Bacillus pasteurii urease with acetohydroxamate anion from X-ray data at 1.55Å resolution. J biol Inorg Chem. 2000;5:110–8. https://doi.org/10.1007/s007750050014

Article  CAS  Google Scholar 

Pearson MA, Michel LO, Hausinger RP, Karplus PA. Structures of Cys319 variants and acetohydroxamate-inhibited Klebsiella aerogenes urease. Biochem. 1997;36:8164–72.

留言 (0)

沒有登入
gif