Regulation of Retrotransposons in Drosophila melanogaster Somatic Tissues

Théron E., Dennis C., Brasset E., Vaury C. 2014. Distinct features of the piRNA pathway in somatic and germ cells: From piRNA cluster transcription to piRNA processing and amplification. Mobile DNA. 5, 28.

Article  Google Scholar 

Qi H., Watanabe T., Ku H.-Y., Liu N., Zhong M., Lin H. 2011. The Yb Body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells. Biol. Chem. 286, 3789–3797. https://doi.org/10.1074/jbc.M110.193888

Article  CAS  Google Scholar 

Dumesic P.A., Natarajan P., Chen C., Drinnenberg I.A., Schiller B.J., Thompson J., Moresco J.J., Yates J.R., Bartel D.P., Madhani H.D. 2013. Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell. 152, 957–968. https://doi.org/10.1016/j.cell.2013.01.046

Zhang Z., Wang J., Schultz N., Zhang F., Parhad S.S., Tu S., Vreven T., Zamore P.D., Weng Z., Theurkauf W.E. 2014. The HP1 homolog rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell. 157, 1353–1363. https://doi.org/10.1016/j.cell.2014.04.030

Article  CAS  Google Scholar 

Wakisaka K.T., Tanaka R., Hirashima T., Muraoka Y., Azuma Y., Yoshida H., Ichiyanagi K., Ohno S., Itoh M., Yamaguchi M. 2019. Novel roles of Drosophila FUS and Aub responsible for piRNA biogenesis in neuronal disorders. 1708, 207‒219. https://doi.org/10.1016/j.brainres.2018.12.028

Andersen P.R., Tirian L., Vunjak M., Brennecke J. 2017. A heterochromatin-dependent transcription machinery drives piRNA expression. Nature. 549, 54–59. https://doi.org/10.1038/nature23482

Article  CAS  Google Scholar 

Schnabl J., Wang J., Hohmann U., Gehre M., Batki J., Andreev V.I., Purkhauser K., Fasching N., Duchek P., Novatchkova M., Mechtler K., Plaschka C., Patel D.J., Brennecke J. 2021. Molecular principles of Piwi-mediated cotranscriptional silencing through the dimeric SFiNX complex. Genes Dev. 35, 392–409. https://doi.org/10.1101/gad.347989.120

Article  CAS  Google Scholar 

Chang Y.-H., Dubnau J. 2019. The gypsy endogenous retrovirus drives non-cell-autonomous propagation in a Drosophila tdp-43 model of neurodegeneration. Curr. Biol. 29, 3135‒3152.e4. https://doi.org/10.1016/j.cub.2019.07.071

Article  CAS  Google Scholar 

Onishi R., Sato K., Murano K., Negishi L., Siomi H., Siomi M.C. 2020. Piwi suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. Sci. Adv. 6 (50), eaaz 7420. https://doi.org/10.1126/sciadv.aaz7420

Muerdter F., Guzzardo P.M., Gillis J., Luo Y., Yu Y., Chen C., Fekete R., Hannon G.J. 2013. A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. Mol. Cell. 50, 736–748. https://doi.org/10.1016/j.molcel.2013.04.006

Article  CAS  Google Scholar 

Stolyarenko A.D. 2020. Nuclear argonaute Piwi gene mutation affects rRNA by inducing rRNA fragment accumulation, antisense expression, and defective processing in Drosophila ovaries. Int. J. Mol. Sci. 21, 1119. https://doi.org/10.3390/ijms21031119

Article  CAS  Google Scholar 

Kim K.W. 2019. PIWI proteins and piRNAs in the nervous system. Mol. Cells. 42, 12, 828‒835. https://doi.org/10.14348/molcells.2019.0241

Article  CAS  Google Scholar 

Kim K.W., Tang N.H., Andrusiak M.G., Wu Z., Chisholm A.D., Jin Y. 2018. A neuronal piRNA pathway inhibits axon regeneration in C. elegans. Neuron. 97, 511‒519.e6. https://doi.org/10.1016/j.neuron.2018.01.014

Article  CAS  Google Scholar 

Perrat P.N., DasGupta S., Wang J., Theurkauf W., Weng Z., Rosbash M., Waddell S. 2013. Transposition-driven genomic heterogeneity in the Drosophila brain. Science. 340, 91–95. https://doi.org/10.1126/science.1231965

Article  CAS  Google Scholar 

Ross R.J., Weiner M.M., Lin H. 2014. PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 505, 353–359. https://doi.org/10.1038/nature12987

Article  CAS  Google Scholar 

Zuo L., Wang Z., Tan Y., Chen X., Luo X. 2016. pi-RNAs and their functions in the brain. Int. J. Hum. Genet. 16 (1–2), 53–60. https://doi.org/10.1080/09723757.2016.11886278

Article  Google Scholar 

Nampoothiri S.S., Rajanikant G.K. 2017. Decoding the ubiquitous role of microRNAs in neurogenesis. Mol. Neurobiol. 54, 2003–2011. https://doi.org/10.1007/s12035-016-9797-2

Article  CAS  Google Scholar 

Trizzino M., Kapusta A., Brown C.D. 2018. Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics. 19, 468. https://doi.org/10.1186/s12864-018-4850-3

Article  CAS  Google Scholar 

Moschetti R., Palazzo A., Lorusso P., Viggiano L., Massimiliano Marsano R. 2020. “What You Need, Baby, I Got It”: Transposable elements as suppliers of cis-operating sequences in Drosophila. Biology (Basel). 9, 25. https://doi.org/10.3390/biology9020025

Article  CAS  Google Scholar 

Mustafin R.N., Khusnutdinova E.K. 2020. Involvement of transposable elements in neurogenesis. Vavilov J. Genet. Breed. 24, 209–218. https://doi.org/10.18699/VJ20.613

Article  CAS  Google Scholar 

Villanueva-Cañas J.L., Horvath V., Aguilera L., González J. 2019. Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster. Nucleic Acids Res. 47 (13), 6842‒6857. https://doi.org/10.1093/nar/gkz490

Article  CAS  Google Scholar 

Senft A.D., Macfarlan T.S. 2021. Transposable elements shape the evolution of mammalian development. Nat. Rev. Genet. 22 (11), 691‒711. https://doi.org/10.1038/s41576-021-00385-1

Article  CAS  Google Scholar 

Kim A.I., Belyaeva E.S., Larkina Z.G., Aslanyan M.M. 1989. Genetic instability and transposition of the mobile element MDG4 in the Drosophila melanogaster mutator line. Russ. J. Genet. 25 (10), 1747–1756.

CAS  Google Scholar 

Hafer N., Schedl P. 2006. Dissection of larval CNS in Drosophila melanogaster. J. Vis. Exp. 1, 85. https://doi.org/10.3791/85-v

Google Scholar 

Hur J.K., Luo Y., Moon S., Ninova M., Marinov G.K., Chung Y.D., Aravin A.A. 2016. Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila. Genes Dev. 30, 840–855. https://doi.org/10.1101/gad.276030.115

Article  CAS  Google Scholar 

Sayers E.W., Bolton E.E., Brister J.R., Canese K., Chan J., Comeau D.C., Connor R., Funk K., Kelly C., Kim S., Madej T., Marchler-Bauer A., Lanczycki C., Lathrop S., Lu Z., Thibaud-Nissen F., Murphy T., Phan L., Skripchenko Y., Tse T., Wang J., Williams R., Trawick B.W., Pruitt K.D., Sherry S.T. 2022. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50 (D1), D20‒D26. https://doi.org/10.1093/nar/gkab1112

Article  CAS  Google Scholar 

Nefedova L.N., Urusov F.A., Romanova N.I., Shmel’kova A.O., Kim A.I. 2012. Study of the transcriptional and transpositional activities of the tirant retrotransposon in Drosophila melanogaster strains mutant for the flamenco locus. Russ. J. Genet. 48, 1089–1096. https://doi.org/10.1134/S1022795412110063

Article  CAS  Google Scholar 

Robinson J.T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. 2011. Integrative genomics viewer. Nat. Biotechnol. 29 (1), 24‒26. https://doi.org/10.1038/nbt.1754

Article  CAS  Google Scholar 

Ewing A.D., Smits N., Sanchez-Luque F.J., Faivre J., Brennan P.M., Richardson S.R., Cheetham S.W., Faulkner G.J. 2020. Nanopore sequencing enables comprehensive transposable element epigenomic profiling. Mol. Cell. 80, 915‒928.e5. https://doi.org/10.1016/j.molcel.2020.10.024

Article  CAS  Google Scholar 

Kaminker J.S., Bergman C.M., Kronmiller B., Carlson J., Svirskas R., Patel S., Frise E., Whe-eler D.A., Lewis S.E., Rubin G.M., Ashburner M., Celniker S.E. 2002. The transposable elements of the Drosophila melanogaster euchromatin: A genomics perspective. Genome Biol. 3 (12), RESEARCH0084. https://doi.org/10.1186/gb-2002-3-12-research0084

Okonechnikov K., Golosova O., Fursov M., Unipro 2012. UGENE: A unified bioinformatics toolkit. Bioinformatics. 28, 1166‒1167. https://doi.org/10.1093/bioinformatics/bts091

Gramates L.S., Agapite J., Attrill H., Calvi B.R., Crosby M.A., Dos Santos G., Goodman J.L., Goutte-Gattat D., Jenkins V.K., Kaufman T., Larkin A., Matthews B.B., Millburn G., Strelets V.B., the FlyBase Consortium. 2022. FlyBase: A guided tour of highlighted features. Genetics. 220 (4), iyac035. https://doi.org/10.1093/genetics/iyac035

Lee Ch., Huang Ch.-Hs. 2013. LASAGNA-Search: An integrated web tool for transcription factor binding site search and visualization. BioTechniques. 54, 141–153. https://doi.org/doi 10.2144/000113999

Article  CAS  Google Scholar 

Mani S.R., Megosh H., Lin H. 2014. PIWI proteins are essential for early Drosophila embryogenesis. Develop. Biol. 385, 340–349. https://doi.org/10.1016/j.ydbio.2013.10.017

Article  CAS  Google Scholar 

Romero-Soriano V., Guerreiro M.P.G. 2016. Expression of the retrotransposon helena reveals a complex pattern of TE deregulation in Drosophila hybrids. PLoS One. 11, e0147903. https://doi.org/10.1371/journal.pone.0147903

Article  CAS  Google Scholar 

Wang S.H., Elgin S.C. 2011. Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc. Natl. Acad. Sci. U. S. A. 108 (52), 21164‒21169. https://doi.org/10.1073/pnas.1107892109

Article  Google Scholar 

Klenov M.S., Sokolova O.A., Yakushev E.Y., Stolyarenko A.D., Mikhaleva E.A., Lavrov S.A., Gvozdev V.A. 2011. Separation of stem cell maintenance and transposon silencing functions of Piwi protein. Proc. Natl. Acad. Sci. U. S. A. 108 (46), 18760‒18765. https://doi.org/10.1073/pnas.1106676108

Article  CAS  Google Scholar 

Gebert D., Neubert L.K., Lloyd C., Gui J., Lehmann R., Teixeira F.K. 2021. Large Drosophila ge-rmline piRNA clusters are evolutionarily labile and dispensable for transposon regulation. Mol. Cell. 81 (19), 3965‒3978.e5. https://doi.org/10.1016/j.molcel.2021.07.011

Article  CAS  Google Scholar 

Chung W.-J., Okamura K., Martin R., Lai E.C. 2008. Endogenous RNA interference provides a somatic defense against drosophila transposons. Curr. Biol. 18, 795–802. https://doi.org/10.1016/j.cub.2008.05.006

Article  CAS  Google Scholar 

Carthew R.W., Sontheimer E.J. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell. 136, 642–655. https://doi.org/10.1016/j.cell.2009.01.035

Article  CAS  Google Scholar 

Cacchione S., Cenci G., Raffa G.D. 2020. Silence at the end: How drosophila regulates expression and transposition of telomeric retroelements. J. Mol. Biol. 432, 4305–4321. https://doi.org/10.1016/j.jmb.2020.06.004

Article  CAS  Google Scholar 

Palazzo A., Lorusso P., Miskey C., Walisko O., Gerbino A., Marobbio C.M.T., Ivics Z., Marsano R.M. 2019. Transcriptionally promiscuous “Blurry” promoters in Tc1/mariner transposons allow transcription in distantly related genomes. Mobile DNA. 10, 13. https://doi.org/10.1186/s13100-019-0155-6

Article 

留言 (0)

沒有登入
gif