The Proteome of Extracellular Membrane Vesicles from Bacillus pumilus 3-19

Toyofuku M., Nomura N., Eberl L. 2019. Types and origins of bacterial membrane vesicles. Nat. Rev. Micro-biol. 17, 13–24.

Article  CAS  Google Scholar 

Vitse J., Devreese B. 2020. The contribution of membrane vesicles to bacterial pathogenicity in cystic fibrosis infections and healthcare associated pneumonia. Front. Microbiol. 11, 630.

Article  Google Scholar 

Cao Y., Lin H. 2021. Characterization and function of membrane vesicles in Gram-positive bacteria. Appl. Microbiol. Biotechnol. 105 (5), 1795–1801.

Article  CAS  Google Scholar 

Stentz R., Jones E., Juodeikis R., Wegmann U., Guirro M., Goldson A.J., Brion A., Booth C., Sudhakar P., Brown I.R., Korcsmáros T., Carding S.R. 2022. The proteome of extracellular vesicles produced by the human gut bacteria Bacteroides thetaiotaomicron in vivo is influenced by environmental and host-derived factors. Appl. Environ. Microbiol. 88 (16), e0053322.

Article  Google Scholar 

Liu J., Hsieh C.L., Gelincik O., Devolder B., Sei S., Zhang S., Lipkin S.M., Chang YF. 2019. Proteomic characterization of outer membrane vesicles from gut mucosa-derived Fusobacterium nucleatum. J. Proteomics. 195, 125–137.

Article  CAS  Google Scholar 

Zhang K., Chu P., Song S., Yang D., Bian Z., Li Y., Gou H., Jiang Z., Cai R., Li C. 2021. Proteome analysis of outer membrane vesicles from a highly virulent strain of Haemophilus parasuis. Front. Vet. Sci. 8, 756764.

Article  Google Scholar 

Terán L.C., Distefano M., Bellich B., Petrosino S., Bertoncin P., Cescutti P., Sblattero D. 2020. Proteomic studies of the biofilm matrix including outer membrane vesicles of Burkholderia multivorans C1576, a strain of clinical importance for cystic fibrosis. Microorganisms. 8 (11), 1826.

Article  Google Scholar 

Zanella I., König E. Tomasi M., Gagliardi A, Frattini L., Fantappiè L., Irene C., Zerbini F., Caproni E., Isaac S.J., Grigolato M., Corbellari R., Valensin S., Ferlenghi I., Giusti F., Bini L., Ashhab Y., Grandi A., Grandi G. 2021. Proteome-minimized outer membrane vesicles from Escherichia coli as a generalized vaccine platform. J. Extracell Vesicles. 10 (4), e12066.

Article  CAS  Google Scholar 

Lee E.Y, Choi D.Y., Kim D.K. 2009. Gram-positive bacteria produce membrane vesicles: Proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics. 9 (24), 5425–5436.

Article  CAS  Google Scholar 

Bitto N.J., Cheng L., Johnston E.L., Pathirana R., Phan T.K., Poon I.K.H., O’Brien-Simpson N.M., Hill A.F., Stinear T.P., Kaparakis-Liaskos M. 2021. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J. Extracell. Vesicles. 10 (6), e12080.

Article  CAS  Google Scholar 

Olaya-Abril A., Prados-Rosales R., McConnell M.J., Martín-Peña R., González-Reyes J.A., Jiménez-Munguía I., Gómez-Gascón L., Fernández J., Luque-García J.L., García-Lidón C., Estévez H., Pachón J., Obando I., Casadevall A., Pirofski L.A., Rodríguez-Ortega M.J. 2014. Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae. J. Proteomics. 106, 46–60.

Article  CAS  Google Scholar 

Kim Y., Edwards N., Fenselau C. 2016. Extracellular vesicle proteomes reflect developmental phases of Bacillus subtilis. Clin. Proteomics. 13, 6.

Article  Google Scholar 

Alkandari S.A., Bhardwaj R.G., Ellepola A., Karched M. 2020. Proteomics of extracellular vesicles produced by Granulicatella adiacens, which causes infective endocarditis. PLoS One. 15 (11), e0227657.

Article  CAS  Google Scholar 

Ilinskaya O.N., Mahmud R.S. 2014. Ribonucleases as antiviral agents. Mol. Biol. 48 (5), 615–623.

Article  CAS  Google Scholar 

Shah Mahmud R., Efimova M.A., Ulyanova V., Ravilov R.K., Shuralev E.A., Kolpakov A., Ilinskaya O. 2020. Bacillus pumilus ribonuclease rescues mice infected by double-stranded RNA-containing reovirus serotype 1. Virus Res. 286, 198086.

Article  CAS  Google Scholar 

Ulyanova V., Shah Mahmud R., Laikov A., Dudkina E., Markelova M., Mostafa A., Pleschka S., Ilinskaya O. 2020. Anti-influenza activity of the ribonuclease binase: Cellular targets detected by quantitative proteomics. Int. J. Mol. Sci. 21 (21), 8294.

Article  CAS  Google Scholar 

Garipov A.R., Nesmelov A.A., Cabrera-Fuentes H.A., Ilinskaya O.N. 2014. Bacillus intermedius ribonuclease (BINASE) induces apoptosis in human ovarian cancer cells. Toxicon. 92, 54–59.

Article  CAS  Google Scholar 

Mitkevich V.A., Kretova O.V., Petrushanko I.Y., Burnysheva K.M., Sosin D.V., Simonenko O.V., Ilinskaya O.N., Tchurikov N.A., Makarov A.A. 2013. Ribonuclease binase apoptotic signature in leukemic Kasumi-1 cells. Biochimie. 95 (6), 1344–1349.

Article  CAS  Google Scholar 

Ilinskaya O.N., Singh I., Dudkina E., Ulyanova V., Kayumov A., Barreto G. 2016. Direct inhibition of oncogenic KRAS by Bacillus pumilus ribonuclease (binase). Biochim. Biophys. Acta. 1863 (7 Pt A), 1559–1567.

Faizullin D., Valiullina Y., Salnikov V., Zelenikhin P., Zuev Y., Ilinskaya O. 2023. Fibrin-rhamnogalacturonan I composite gel for therapeutic enzyme delivery to intestinal tumors. Int. J. Mol. Sci. 24 (2), 926.

Article  CAS  Google Scholar 

Kharitonova M.A., Kolpakov A.I., Kupriyanova-Ashina F.G. 2018. Intensification of secreted Bsn ribonuclease Bacillus subtilis production under salt stress. Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Ovchinnikova, 14 (2), 42–47.

Google Scholar 

Arinushkina E.V. 1970. Rukovodstvo po khimicheskomu analizu pochv (Guide to the Chemical Analysis of Soils). Moscow: Mosk. Gos. Univ.

Liao Y., Smyth G.K., Shi W. 2014. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 30 (7), 923–930.

Article  CAS  Google Scholar 

Konovalova O.A., Yakovleva G.Yu., Steryakov O.V., Trushin M.V. 2013. Scanning probe microscopy in the study of morphometric changes and physical parameters of Escherichia coli bacteria under the action of 2,4,6-trinitrotoluene. W. Appl. Sci. J. 23 (4), 507–509.

CAS  Google Scholar 

Chernov V.M., Chernova O.A., Mouzykantov A.A., Efimova I.R., Shaymardanova G.F., Medvedeva E.S., Trushin M.V. 2011. Extracellular vesicles derived from Acholeplasma laidlawii PG8. Sci. World J. 11, 1120–1130.

Article  Google Scholar 

Yu N.Y., Wagner J.R., Laird M.R., Melli G., Rey S., Lo R., Dao P., Sahinalp S.C., Ester M., Foster L.J., Brinkman F.S.L. 2010. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 26 (13), 1608–1615.

Article  CAS  Google Scholar 

Kanehisa M., Sato Y., Morishima K. 2016). BlastKOA-LA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731.

Article  CAS  Google Scholar 

Goedhart J., Luijsterburg M.S. 2020. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci. Rep. 10, 20560.

Article  ADS  CAS  Google Scholar 

Adhikari S., Curtis P.D. 2016. DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol. Rev. 40 (5), 575–591.

Article  CAS  Google Scholar 

Dorward D.W., Garon C.F. 1990. DNA is packaged within membrane-derived vesicles of Gram-negative but not Gram-positive bacteria. Appl. Environ. Microbiol. 56 (6), 1960–1962.

Article  ADS  CAS  Google Scholar 

Jiang Y., Kong Q., Roland K.L., Curtiss R. 2014. Membrane vesicles of Clostridium perfringens type A strains induce innate and adaptive immunity. Int. J. Med. Microbiol. 304 (3–4), 431–443.

Article  CAS  Google Scholar 

Liao S., Klein M.I., Heim K.P., Fan Y, Bitoun J.P., Ahn S.J., Burne R.A., Koo H, Brady L.J., Wen Z.T. 2014. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J. Bacteriol. 196 (13), 2355–2366.

Article  Google Scholar 

Mendelson N.H., Bourque A., Wilkening K., Anderson K.R., Watkins J.C. 1999. Organized cell swimming motions in Bacillus subtilis colonies: Patterns of short-lived whirls and jets. J. Bacteriol. 181 (2), 600–609.

Article  CAS  Google Scholar 

Guttenplan S.B., Kearns D.B. 2013. Regulation of flagellar motility during biofilm formation. FEMS Microbiol. Rev. 37 (6), 849–871.

Article  CAS  Google Scholar 

Barnhart M.M., Chapman M.R. 2006. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147.

Article  CAS  Google Scholar 

Dragoš A., Kovács Á.T., Claessen D. 2017. The role of functional amyloids in multicellular growth and development of Gram-positive bacteria. Biomolecules. 7 (3), 60.

Article  Google Scholar 

Malishev R., Abbasi R., Jelinek R., Chai L. 2018. Bacterial model membranes reshape fibrillation of a functional amyloid protein. Biochemistry. 57 (35), 5230–5238.

Article  CAS  Google Scholar 

Böhning J., Ghrayeb M., Pedebos C., Abbas D.K., Khalid S., Chai L., Bharat T.A.M. 2022. Donor-strand exchange drives assembly of the TasA scaffold in Bacillus subtilis biofilms. Nat. Commun. 13 (1), 7082.

Article  ADS  Google Scholar 

留言 (0)

沒有登入
gif