The rapid proximity labeling system PhastID identifies ATP6AP1 as an unconventional GEF for Rheb

Schmelzle, T. & Hall, M. N. TOR, a central controller of cell growth. Cell 103, 253–262 (2000).

Article  CAS  PubMed  Google Scholar 

Sabers, C. J. et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J. Biol. Chem. 270, 815–822 (1995).

Article  CAS  PubMed  Google Scholar 

Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

Article  CAS  PubMed  Google Scholar 

Chiu, M. I., Katz, H. & Berlin, V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc. Natl. Acad. Sci. USA 91, 12574–12578 (1994).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758 (1994).

Article  ADS  CAS  PubMed  Google Scholar 

Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457–468 (2002).

Article  CAS  PubMed  Google Scholar 

Battaglioni, S., Benjamin, D., Walchli, M., Maier, T. & Hall, M. N. mTOR substrate phosphorylation in growth control. Cell 185, 1814–1836 (2022).

Article  CAS  PubMed  Google Scholar 

Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K. L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–945 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Chantranupong, L. et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165, 153–164 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saxton, R. A., Chantranupong, L., Knockenhauer, K. E., Schwartz, T. U. & Sabatini, D. M. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 536, 229–233 (2016).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Anthony, J. C. et al. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J. Nutr. 130, 2413–2419 (2000).

Article  CAS  PubMed  Google Scholar 

Wolfson, R. L. et al. METABOLISM Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48 (2016).

Article  ADS  CAS  PubMed  Google Scholar 

Chen, J. et al. SAR1B senses leucine levels to regulate mTORC1 signalling. Nature 596, 281–284 (2021).

Article  ADS  CAS  PubMed  Google Scholar 

Gu, X. et al. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 358, 813–818 (2017).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Cangelosi, A. L. et al. Zonated leucine sensing by Sestrin-mTORC1 in the liver controls the response to dietary leucine. Science 377, 47–56 (2022).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Gu, X. et al. Sestrin mediates detection of and adaptation to low-leucine diets in Drosophila. Nature 609, 209–216 (2022).

Article  ADS  Google Scholar 

Hallett, J. E. H. & Manning, B. D. CASTORing new light on amino acid sensing. Cell 165, 15–17 (2016).

Article  CAS  PubMed  Google Scholar 

Inoki, K. & Guan, K. L. Rag GTPases regulate cellular amino acid homeostasis. Proc. Natl. Acad. Sci. USA 119, e2200788119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, E. & Guan, K. L. RAG GTPases in nutrient-mediated TOR signaling pathway. Cell Cycle 8, 1014–1018 (2009).

Article  CAS  PubMed  Google Scholar 

Jewell, J. L. et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 347, 194–198 (2015).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Wyant, G. A. et al. mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 171, 642–654 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valenstein, M. L. et al. Structure of the nutrient-sensing hub GATOR2. Nature 607, 610–616 (2022).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Inoki, K., Zhu, T. Q. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

Article  CAS  PubMed  Google Scholar 

Steinberg, G. R. & Carling, D. AMP-activated protein kinase: the current landscape for drug development. Nat. Rev. Drug Discov. 18, 527–551 (2019).

Article  CAS  PubMed  Google Scholar 

Dibble, C. C. et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 47, 535–546 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-Kinase/Akt pathway. Mol. Cell 10, 151–162 (2002).

Article  CAS  PubMed  Google Scholar 

Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268 (2003).

Article  CAS  PubMed  Google Scholar 

Dibble, C. C. & Manning, B. D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 15, 555–564 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K. & Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15, 702–713 (2005).

Article  CAS  PubMed  Google Scholar 

Manning, B. D. Balancing Akt with S6K: Implications for both metabolic diseases and tumorigenesis. J. Cell Biol. 167, 1255–1255 (2004).

Article  CAS  PubMed Central  Google Scholar 

Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 169, 362–362 (2017).

Article  Google Scholar 

Karmaus, P. W. F. et al. Metabolic heterogeneity underlies reciprocal fates of T(H)17 cell sternness and plasticity. Nature 565, 101–105 (2019).

Article  ADS  CAS  PubMed  Google Scholar 

Yang, K. et al. Metabolic signaling directs the reciprocal lineage decisions of alpha beta and gamma delta T cells. Sci. Immunol. 3, eaas9818 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Long, L. Y. et al. CRISPR screens unveil signal hubs for nutrient licensing of T cell immunity. Nature 600, 308–313 (2021).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Byles, V. et al. Hepatic mTORC1 signaling activates ATF4 as part of its metabolic response to feeding and insulin. Mol. Metab. 53, 101309 (2021).

留言 (0)

沒有登入
gif