Human embryonic stem cells maintain their stemness in three-dimensional microenvironment

Abbas Y, Carnicer-Lombarte A, Gardner L, Thomas J, Brosens JJ, Moffett A, Sharkey AM, Franze K, Burton GJ, Oyen ML (2019) Tissue stiffness at the human maternal–fetal interface. Hum Reprod 34(10):1999–2008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abraham S, Riggs MJ, Nelson K, Lee V, Rao RR (2010) Characterization of human fibroblast-derived extracellular matrix components for human pluripotent stem cell propagation. Acta Biomater 6(12):4622–4633

Article  CAS  PubMed  Google Scholar 

Amit M, Chebath J, Margulets V, Laevsky I, Miropolsky Y, Shariki K, Peri M, Blais I, Slutsky G, Revel M, Itskovitz-Eldor J (2010) Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev Rep 6:248–259

Article  PubMed  Google Scholar 

Caliari SR, Vega SL, Kwon M, Soulas EM, Burdick JA (2016) Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials 103:314–323

Article  CAS  PubMed  PubMed Central  Google Scholar 

Candiello J, Singh SS, Task K, Kumta PN, Banerjee I (2013) Early differentiation patterning of mouse embryonic stem cells in response to variations in alginate substrate stiffness. J Biol Eng 7(1):1–14

Article  Google Scholar 

Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8(5):424–429

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen VC, Couture SM, Ye J, Lin Z, Hua G, Huang HIP, Wu J, Hsu D, Carpenter MK, Couture LA (2012) Scalable GMP compliant suspension culture system for human ES cells. Stem Cell Res 8(3):388–402

Article  CAS  PubMed  Google Scholar 

Chowdhury F, Li Y, Poh YC, Yokohama-Tamaki T, Wang N, Tanaka TS (2010) Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS ONE 5(12):e15655

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Desbaillets I, Ziegler U, Groscurth P, Gassmann M (2000) Embryoid bodies: an in vitro model of mouse embryogenesis. Exp Physiol 85(6):645–651

Article  CAS  PubMed  Google Scholar 

Driscoll TP, Cosgrove BD, Heo SJ, Shurden ZE, Mauck RL (2015) Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys J 108(12):2783–2793

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183

Article  CAS  PubMed  Google Scholar 

Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

Article  CAS  PubMed  Google Scholar 

Evans ND, Minelli C, Gentleman E, LaPointe V, Patankar SN, Kallivretaki M, Chen X, Roberts CJ, Stevens MM (2009) Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cell Mater 18(1):e13

Google Scholar 

Girgin M, Broguiere N, Mattolini L, Lutolf MA (2023) New approach to generate gastruloids to develop anterior neural tissues. Bio Protoc 13(14):e4722

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar N, Hinduja I, Nagvenkar P, Pillai L, Zaveri K, Mukadam L, Telang J, Desai S, Mangoli V, Mangoli R, Padgaonkar S, Kaur G, Puri C, Bhartiya D (2009) Derivation and characterization of two genetically unique human embryonic stem cell lines on in-house-derived human feeders. Stem Cells Dev 18(3):435–445

Article  CAS  PubMed  Google Scholar 

Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379

Article  ADS  CAS  PubMed  Google Scholar 

Li X, Ma R, Gu Q, Liang L, Wang L, Zhang Y, Wang X, Liu X, Li Z, Fang J, Wu J (2018) A fully defined static suspension culture system for large-scale human embryonic stem cell production. Cell Death Dis 9(9):892

Article  PubMed  PubMed Central  Google Scholar 

Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9(6):625–635

Article  CAS  PubMed  Google Scholar 

Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Gene Dev 12(13):2048–2060

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oh SK, Chen AK, Mok Y, Chen X, Lim UM, Chin A, Choo AB, Reuveny S (2009) Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2(3):219–230

Article  CAS  PubMed  Google Scholar 

Pan G, Thomson JA (2007) Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 17(1):42–49

Article  CAS  PubMed  Google Scholar 

Perestrelo T, Correia M, Ramalho-Santos J, Wirtz D (2018) Metabolic and mechanical cues regulating pluripotent stem cell fate. Trends Cell Biol 28:1014–29

Article  CAS  PubMed  Google Scholar 

Rowland TJ, Miller LM, Blaschke AJ, Doss EL, Bonham AJ, Hikita ST, Johnson LV, Clegg DO (2010) Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells Dev 19(8):1231–1240

Article  CAS  PubMed  Google Scholar 

Shi G, Jin Y (2010) Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res Ther 1:1–9

Article  Google Scholar 

Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

Article  ADS  CAS  PubMed  Google Scholar 

Vallier L, Alexander M, Pedersen RA (2005) Activin/nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118(19):4495–4509

Article  CAS  PubMed  Google Scholar 

Van HD, D’Amour KA, German MS, Van Hoof D (2009) Derivation of insulin-producing cells from human embryonic stem cells. Stem Cell Res 3:73–87

Article  Google Scholar 

Virdi JK, Pethe P (2022) Soft substrate maintains stemness and pluripotent stem cell-like phenotype of human embryonic stem cells under defined culture conditions. Cytotechnology 74(4):479–489

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Zhang Z, Tao H, Liu J, Hopyan S, Sun Y (2018) Characterizing inner pressure and stiffness of trophoblast and inner cell mass of blastocysts. Biophys J 115(12):2443–2450

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang S, Chong LH, Woon JYX, Chua TX, Cheruba E, Yip AK, Li HY, Chiam KH, Koh CG (2023) Zyxin regulates embryonic stem cell fate by modulating mechanical and biochemical signaling interface. Commun Biol 6(1):62

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao Y, Fei X, Guo J, Zou G, Pan W, Zhang J, Huang Y, Liu T, Cheng W (2017) Induction of reprogramming of human amniotic epithelial cells into iPS cells by overexpression of Yap, Oct4 and Sox2 through the activation of the Hippo-Yap pathway. Exp Ther Med 14(1):199–206

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif