The multi-CDK inhibitor dinaciclib reverses bromo- and extra-terminal domain (BET) inhibitor resistance in acute myeloid leukemia via inhibition of Wnt/β-catenin signaling

Vasu S, Kohlschmidt J, Mrozek K, Eisfeld AK, Nicolet D, Sterling LJ et al. Ten-year outcome of patients with acute myeloid leukemia not treated with allogeneic transplantation in first complete remission. Blood Adv [Internet]. 2018/07/12. 2018;2(13):1645–50. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29991495.

Sasaki K, Ravandi F, Kadia TM, DiNardo CD, Short NJ, Borthakur G, et al. De novo acute myeloid leukemia: a population- based study of outcome in the United States based on the Surveillance, Epidemiology, and end results (SEER) database, 1980 to 2017. Cancer. 2021;127(12):2049–61.

Article  PubMed  Google Scholar 

Grieselhuber NR, Mims AS. Novel Targeted Therapeutics in Acute Myeloid Leukemia: an Embarrassment of Riches. Curr Hematol Malig Rep [Internet]. 2021/03/20. 2021;16(2):192–206. Available from: https://www.ncbi.nlm.nih.gov/pubmed/33738705.

Newell LF, Cook RJ. Advances in acute myeloid leukemia. BMJ [Internet]. 2021 Oct 6 [cited 2022 Sep 30];375:n2026. Available from: https://pubmed.ncbi.nlm.nih.gov/34615640/.

Dawson MA, Gudgin EJ, Horton SJ, Giotopoulos G, Meduri E, Robson S, et al. Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia. Leuk [Internet]. 2014;28:311–20. Available from: www.nature.com/leu.

Article  CAS  Google Scholar 

Chen C, Liu Y, Lu C, Cross JR, Morris JP th, Shroff AS et al. Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition. Genes Dev [Internet]. 2013/09/26. 2013;27(18):1974–85. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24065765.

Pulikkan JA, Hegde M, Ahmad HM, Belaghzal H, Illendula A, Yu J et al. CBFbeta-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia. Cell [Internet]. 2018/06/30. 2018;174(1):172–186 e21. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29958106.

Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature [Internet]. 2011/08/05. 2011;478(7370):524–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21814200.

Groschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BAM, Erpelinck C et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell [Internet]. 2014/04/08. 2014;157(2):369–81. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24703711.

Chen C, Liu Y, Rappaport AR, Kitzing T, Schultz N, Zhao Z et al. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell [Internet]. 2014/05/06. 2014;25(5):652–65. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24794707.

Yang H, Kurtenbach S, Guo Y, Lohse I, Durante MA, Li J et al. Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood [Internet]. 2017/11/09. 2018;131(3):328–41. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29113963.

Fiskus W, Sharma S, Qi J, Shah B, Devaraj SG, Leveque C et al. BET protein antagonist JQ1 is synergistically lethal with FLT3 tyrosine kinase inhibitor (TKI) and overcomes resistance to FLT3-TKI in AML cells expressing FLT-ITD. Mol Cancer Ther [Internet]. 2014/07/24. 2014;13(10):2315–27. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25053825.

Herait PE, Berthon C, Thieblemont C, Raffoux E, Magarotto V, Stathis A et al. Abstract CT231: BET-bromodomain inhibitor OTX015 shows clinically meaningful activity at nontoxic doses: interim results of an ongoing phase I trial in hematologic malignancies. Cancer Res [Internet]. 2014 Oct 1 [cited 2022 Nov 16];74(19_Supplement):CT231–CT231. Available from: https://aacrjournals.org/cancerres/article/74/19_Supplement/CT231/598446/Abstract-CT231-BET-bromodomain-inhibitor-OTX015.

Zhong M, Gao R, Zhao R, Huang Y, Chen C, Li K et al. BET bromodomain inhibition rescues PD-1-mediated T-cell exhaustion in acute myeloid leukemia. [cited 2024 Jan 3]; https://doi.org/10.1038/s41419-022-05123-x.

Ozer HG, El-Gamal D, Powell B, Hing ZA, Blachly JS, Harrington B et al. BRD4 Profiling Identifies Critical Chronic Lymphocytic Leukemia Oncogenic Circuits and Reveals Sensitivity to PLX51107, a Novel Structurally Distinct BET Inhibitor. Cancer Discov [Internet]. 2018/02/02. 2018;8(4):458–77. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29386193.

Rathert P, Roth M, Neumann T, Muerdter F, Roe JS, Muhar M et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature [Internet]. 2015/09/15. 2015;525(7570):543–7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26367798.

Fong CY, Gilan O, Lam EY, Rubin AF, Ftouni S, Tyler D et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature [Internet]. 2015/09/15. 2015;525(7570):538–42. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26367796.

Kurimchak AM, Shelton C, Duncan KE, Johnson KJ, Brown J, O’Brien S et al. Resistance to BET Bromodomain Inhibitors Is Mediated by Kinome Reprogramming in Ovarian Cancer. Cell Rep [Internet]. 2016/07/28. 2016;16(5):1273–86. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27452461.

Jang JE, Eom JI, Jeung HK, Cheong JW, Lee JY, Kim JS et al. AMPK-ULK1-Mediated Autophagy Confers Resistance to BET Inhibitor JQ1 in Acute Myeloid Leukemia Stem Cells. Clin Cancer Res [Internet]. 2016/11/20. 2017;23(11):2781–94. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27864418.

Jin X, Yan Y, Wang D, Ding D, Ma T, Ye Z et al. DUB3 Promotes BET Inhibitor Resistance and Cancer Progression by Deubiquitinating BRD4. Mol Cell [Internet]. 2018/07/31. 2018;71(4):592–605 e4. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30057199.

Hishiki K, Akiyama M, Kanegae Y, Ozaki K, Ohta M, Tsuchitani E et al. NF-kappaB signaling activation via increases in BRD2 and BRD4 confers resistance to the bromodomain inhibitor I-BET151 in U937 cells. Leuk Res [Internet]. 2018/10/10. 2018;74:57–63. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30300821.

Pawar A, Gollavilli PN, Wang S, Asangani IA. Resistance to BET Inhibitor Leads to Alternative Therapeutic Vulnerabilities in Castration-Resistant Prostate Cancer. Cell Rep [Internet]. 2018/03/01. 2018;22(9):2236–45. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29490263.

Ambrosini G, Do C, Tycko B, Realubit RB, Karan C, Musi E et al. Inhibition of NF-kappaB-Dependent Signaling Enhances Sensitivity and Overcomes Resistance to BET Inhibition in Uveal Melanoma. Cancer Res [Internet]. 2019/03/20. 2019;79(9):2415–25. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30885979.

Cooper JM, Patel AJ, Chen Z, Liao CP, Chen K, Mo J et al. Overcoming BET Inhibitor Resistance in Malignant Peripheral Nerve Sheath Tumors. Clin Cancer Res [Internet]. 2019/02/24. 2019;25(11):3404–16. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30796033.

Yin Y, Sun M, Zhan X, Wu C, Geng P, Sun X et al. EGFR signaling confers resistance to BET inhibition in hepatocellular carcinoma through stabilizing oncogenic MYC. J Exp Clin Cancer Res [Internet]. 2019/02/17. 2019;38(1):83. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30770740.

Berthon C, Raffoux E, Thomas X, Vey N, Gomez-Roca C, Yee K et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol [Internet]. 2016/04/12. 2016;3(4):e186-95. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27063977.

Chua V, Orloff M, Teh JL, Sugase T, Liao C, Purwin TJ et al. Stromal fibroblast growth factor 2 reduces the efficacy of bromodomain inhibitors in uveal melanoma. EMBO Mol Med [Internet]. 2019/01/06. 2019;11(2). Available from: https://www.ncbi.nlm.nih.gov/pubmed/30610113.

Shi X, Mihaylova VT, Kuruvilla L, Chen F, Viviano S, Baldassarre M et al. Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-beta-dependent mechanisms. Proc Natl Acad Sci U S A [Internet]. 2016/07/20. 2016;113(31):E4558-66. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27432991.

Wyce A, Matteo JJ, Foley SW, Felitsky DJ, Rajapurkar SR, Zhang XP et al. MEK inhibitors overcome resistance to BET inhibition across a number of solid and hematologic cancers. Oncogenesis [Internet]. 2018/04/21. 2018;7(4):35. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29674704.

Dai X, Gan W, Li X, Wang S, Zhang W, Huang L et al. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nat Med [Internet]. 2017/08/15. 2017;23(9):1063–71. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28805820.

Zhang P, Wang D, Zhao Y, Ren S, Gao K, Ye Z et al. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat Med [Internet]. 2017/08/15. 2017;23(9):1055–62. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28805822.

McCalmont H, Li KL, Jones L, Toubia J, Bray SC, Casolari DA, et al. Efficacy of combined CDK9/BET inhibition in preclinical models of MLL-rearranged acute leukemia. Blood Adv. 2020;4(2):296–300.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomska K, Kurilov R, Lee KS, Hullein J, Lukas M, Sellner L et al. Drug-based perturbation screen uncovers synergistic drug combinations in Burkitt lymphoma. Sci Rep [Internet]. 2018/08/15. 2018;8(1):12046. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30104685.

Gerlach D, Tontsch-Grunt U, Baum A, Popow J, Scharn D, Hofmann MH et al. The novel BET bromodomain inhibitor BI 894999 represses super-enhancer-associated transcription and synergizes with CDK9 inhibition in AML. Oncogene [Internet]. 2018/03/02. 2018;37(20):2687–701. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29491412.

Bolin S, Borgenvik A, Persson CU, Sundstrom A, Qi J, Bradner JE et al. Combined BET bromodomain and CDK2 inhibition in MYC-driven medulloblastoma. Oncogene [Internet]. 2018/03/08. 2018;37(21):2850–62. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29511348.

Moreno N, Holsten T, Mertins J, Zhogbi A, Johann P, Kool M et al. Combined BRD4 and CDK9 inhibition as a new therapeutic approach in malignant rhabdoid tumors. Oncotarget [Internet]. 2017/11/22. 2017;8(49):84986–95. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29156698.

Bragelmann J, Dammert MA, Dietlein F, Heuckmann JM, Choidas A, Bohm S et al. Systematic Kinase Inhibitor Profiling Identifies CDK9 as a Synthetic Lethal Target in NUT Midline Carcinoma. Cell Rep [Internet]. 2017/09/21. 2017;20(12):2833–45. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28930680.

Baker EK, Taylor S, Gupte A, Sharp PP, Walia M, Walsh NC et al. BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells. Sci Rep [Internet]. 2015/05/07. 2015;5:10120. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25944566.

Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell [Internet]. 2005/08/20. 2005;19(4):523–34. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16109376.

Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell [Internet]. 2005/08/20. 2005;19(4):535–45. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16109377.

Whittaker SR, Mallinger A, Workman P, Clarke PA. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol Ther [Internet]. 2017/02/09. 2017;173:83–105. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28174091.

Parry D, Guzi T, Shanahan F, Davis N, Prabhavalkar D, Wiswell D et al. Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol Cancer Ther [Internet]. 2010/07/29. 2010;9(8):2344–53. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20663931.

Paruch K, Dwyer MP, Alvarez C, Brown C, Chan TY, Doll RJ et al. Discovery of Dinaciclib (SCH 727965): A Potent and Selective Inhibitor of Cyclin-Dependent Kinases. ACS Med Chem Lett [Internet]. 2010/08/12. 2010;1(5):204–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24900195.

Johnson SF, Cruz C, Greifenberg AK, Dust S, Stover DG, Chi D et al. CDK12 Inhibition Reverses De Novo and Acquired PARP Inhibitor Resistance in BRCA Wild-Type and Mutated Models of Triple-Negative Breast Cancer. Cell Rep [Internet]. 2016/11/24. 2016;17(9):2367–81. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27880910.

Chen P, Lee Nv, Hu W, Xu M, Ferre RA, Lam H et al. Spectrum and Degree of CDK Drug Interactions Predicts Clinical Performance. Mol Cancer Ther [Internet]. 2016/08/09. 2016;15(10):2273–81. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27496135.

Wu G, Huang H, Garcia Abreu J, He X. Inhibition of GSK3 phosphorylation of beta-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLoS One [Internet]. 2009/03/19. 2009;4(3):e4926. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19293931.

Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P et al. Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature [Internet]. 2005/12/13. 2005;438(7069):867–72. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16341016.

Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature [Internet]. 2005/12/13. 2005;438(7069):873–7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16341017.

Soares-Lima SC, Pombo-De-Oliveira MS, Carneiro FRG. The multiple ways Wnt signaling contributes to acute leukemia pathogenesis. [cited 2024 Jan 14]; Available from: https://jlb.onlinelibrary.wiley.com/doi/https://doi.org/10.1002/JLB.2MR0420-707R.

Gruszka AM, Valli D, Alcalay M. Wnt Signalling in Acute Myeloid Leukaemia. Cells [Internet]. 2019/11/11. 2019;8(11). Available from: https://www.ncbi.nlm.nih.gov/pubmed/31703382.

Chen Y, Jacamo R, Konopleva M, Garzon R, Croce C, Andreeff M. CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia. J Clin Invest [Internet]. 2013 Jun 3 [cited 2023 Apr 10];123(6):2395–407. Available from: http://www.jci.org.

Gregory GP, Hogg SJ, Kats LM, Vidacs E, Baker AJ, Gilan O et al. CDK9 inhibition by dinaciclib potently suppresses Mcl-1 to induce durable apoptotic responses in aggressive MYC-driven B-cell lymphoma in vivo. 2015.

Hing ZA, Walker JS, Whipp EC, Brinton L, Cannon M, Zhang P et al. Dysregulation of PRMT5 in chronic lymphocytic leukemia promotes progression with high risk of Richter’s transformation. Nature Communications 2023 14:1 [Internet]. 2023 Jan 6 [cited 2023 Apr 13];14(1):1–21. Available from: https://www.nature.com/articles/s41467-02235778-1.

Brinton LT, Zhang P, Williams K, Canfield D, Orwick S, Sher S et al. Synergistic effect of BCL2 and FLT3 co-inhibition in acute myeloid leukemia. J Hematol Oncol [Internet]. 2020/10/21. 2020;13(1):139. Available from: https://www.ncbi.nlm.nih.gov/pubmed/33076970.

Gojo I, Sadowska M, Walker A, Feldman EJ, Iyer SP, Baer MR et al. Clinical and laboratory studies of the novel cyclin-dependent kinase inhibitor dinaciclib (SCH 727965) in acute leukemias. Cancer Chemother Pharmacol [Internet]. 2013/08/21. 2013;72(4):897–908. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23949430.

Nemunaitis JJ, Small KA, Kirschmeier P, Zhang D, Zhu Y, Jou YM et al. A first-in-human, phase 1, dose-escalation study of dinaciclib, a novel cyclin-dependent kinase inhibitor, administered weekly in subjects with advanced malignancies. J Transl Med [Internet]. 2013/10/18. 2013;11:259. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24131779.

Lee L, Hizukuri Y, Severson P, Powell B, Zhang C, Ma Y et al. A novel combination regimen of BET and FLT3 inhibition for FLT3-ITD acute myeloid leukemia. Haematologica [Internet]. 2021/01/29. 2021;106(4):1022–33. Available from: https://www.ncbi.nlm.nih.gov/pubmed/33504139.

Chen XX, Xie FF, Zhu XJ, Lin F, Pan SS, Gong LH et al. Cyclin-dependent kinase inhibitor dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer. Oncotarget [Internet]. 2015/05/13. 2015;6(17):14926–39. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25962959.

Davidson G, Shen J, Huang YL, Su Y, Karaulanov E, Bartscherer K, et al. Cell Cycle Control of Wnt Receptor Activation Dev Cell. 2009;17(6):788–99.

CAS  PubMed  Google Scholar 

Mahmoudi T, Li VS, Ng SS, Taouatas N, Gj Vries R, Mohammed S et al. The kinase TNIK is an essential activator of Wnt target genes. EMBO J [Internet]. 2009 [cited 2023 Aug 29];28:3329–40. Available from: https://www.embopress.org/doi/https://doi.org/10.1038/emboj.2009.285.

Gupta PSP, Folger JK, Rajput SK, Lv L, Yao J, Ireland JJ et al. Regulation and regulatory role of WNT signaling in potentiating FSH action during bovine dominant follicle selection. PLoS One [Internet]. 2014 Jun 17 [cited 2024 Jan 7];9(6). Available from: https://pubmed.ncbi.nlm.nih.gov/24936794/.

Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A [Internet]. 1999 May 11 [cited 2023 May 21];96(10):5522–7. Available from: https://www.pnas.org/doi/abs/https://doi.org/10.1073/pnas.96.10.5522.

Carter BZ, Qiu Y, Huang X, Diao L, Zhang N, Coombes KR et al. Survivin is highly expressed in CD34 + 38 – leukemic stem/progenitor cells and predicts poor clinical outcomes in AML. Blood [Internet]. 2012 Jul 5 [cited 2023 May 21];120(1):173–80. Available from: https://ashpublications.org/blood/article/120/1/173/30164/Survivin-is-highly-expressed-in-CD34-38-leukemic.

Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U et al. Negative Feedback Loop of Wnt Signaling through Upregulation of Conductin/ Axin2 in Colorectal and Liver Tumors. Mol Cell Biol [Internet]. 2002 [cited 2023 May 21];22(4):1184–93. Available from: https://www.tandfonline.com/action/journalInformation?journalCode=tmcb20.

Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet Rho GTPases. [cited 2023 Oct 10]; Available from: http://www.genesdev.org/cgi/doi/10.1101/gad.1760809.

Zhang P, Brinton LT, Gharghabi M, Sher S, Williams K, Cannon M et al. Targeting OXPHOS de novo purine synthesis as the nexus of FLT3 inhibitor–mediated synergistic antileukemic actions. Sci Adv [Internet]. 2022 Sep 16 [cited 2023 May 22];8(37):9005. Available from: https://www.science.org/doi/https://doi.org/10.1126/sciadv.abp9005.

Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. 1998.

Yue R, Liu H, Huang Y, Wang J, Shi D, Su Y et al. Sempervirine inhibits proliferation and promotes apoptosis by regulating Wnt/β-Catenin pathway in human hepatocellular carcinoma. Front Pharmacol. 2021;12.

Müller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol [Internet]. 2004 Apr 1 [cited 2024 Jan 10];24(7):2890–904. Available from: https://pubmed.ncbi.nlm.nih.gov/15024077/.

Lane SW, Wang YJ, Lo Celso C, Ragu C, Bullinger L, Sykes SM et al. Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood [Internet]. 2011 Sep 8 [cited 2024 Jan 10];118(10):2849–56. Available from: https://pubmed.ncbi.nlm.nih.gov/21765021/.

Morgan RG, Pearn L, Liddiard K, Pumford SL, Burnett AK, Tonks A et al. γ-Catenin is overexpressed in acute myeloid leukemia and promotes the stabilization and nuclear localization of β-catenin. Leukemia [Internet]. 2013 Feb [cited 2024 Jan 10];27(2):336–43. Available from: https://pubmed.ncbi.nlm.nih.gov/22858986/.

Baker A, Gregory GP, Verbrugge I, Kats L, Hilton JJ, Vidacs E et al. The CDK9 Inhibitor Dinaciclib Exerts Potent Apoptotic and Antitumor Effects in Preclinical Models of MLL-Rearranged Acute Myeloid Leukemia. Cancer Res [Internet]. 2015/12/03. 2016;76(5):1158–69. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26627013.

Flynn J, Jones J, Johnson AJ, Andritsos L, Maddocks K, Jaglowski S et al. Dinaciclib is a novel cyclin-dependent kinase inhibitor with significant clinical activity in relapsed and refractory chronic lymphocytic leukemia. Leukemia [Internet]. 2015/02/25. 2015;29(7):1524–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25708835.

Piya S, Andreeff M, Borthakur G. BETP degradation simultaneously targets acute myelogenous leukemic stem cells and the microenvironment graphical abstract the Journal of Clinical Investigation. J Clin Invest. 2019;129(5):1878–94.

Article  PubMed  PubMed Central  Google Scholar 

Zhong Z, Virshup DM. Wnt signaling and drug resistance in cancer. Mol Pharmacol. 2020;97(2):72–89.

Article  CAS  PubMed  Google Scholar 

Emons G, Spitzner M, Reineke S, Möller J, Auslander N, Kramer F et al. Chemoradiotherapy resistance in colorectal cancer cells is mediated by Wnt/β-catenin signaling. Molecular Cancer Research [Internet]. 2017 Nov 1 [cited 2024 Jan 9];15(11):1481–90. https://doi.org/10.1158/1541-7786.MCR-17-0205.

Russell JO, Ko S, Saggi HS, Singh S, Poddar M, Shin D et al. Bromodomain and Extraterminal (BET) Proteins Regulate Hepatocyte Proliferation in Hepatocyte-Driven Liver Regeneration. Am J Pathol [Internet]. 2018/03/17. 2018;188(6):1389–405. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29545201.

Ko S, Choi TY, Russell JO, So J, Monga SPS, Shin D. Bromodomain and extraterminal (BET) proteins regulate biliary-driven liver regeneration. J Hepatol [Internet]. 2015/10/28. 2016;64(2):316–25. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26505118.

Liu C, Cheng X, Chen J, Wang Y, Wu X, Tian R et al. Suppression of YAP/TAZ-Notch1-NICD axis by bromodomain and extraterminal protein inhibition impairs liver regeneration. Theranostics [Internet]. 2019/07/10. 2019;9(13):3840–52. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31281517.

Hanse EA, Nelsen CJ, Goggin MM, Anttila CK, Mullany LK, Berthet C et al. Cdk2 plays a critical role in hepatocyte cell cycle progression and survival in the setting of cyclin D1 expression in vivo. Cell Cycle [Internet]. 2009/08/05. 2009;8(17):2802–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19652536.

Hu W, Nevzorova YA, Haas U, Moro N, Sicinski P, Geng Y et al. Concurrent deletion of cyclin E1 and cyclin-dependent kinase 2 in hepatocytes inhibits DNA replication and liver regeneration in mice. Hepatology [Internet]. 2013/06/22. 2014;59(2):651–60. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23787781.

Mah AT, Yan KS, Kuo CJ. Wnt pathway regulation of intestinal stem cells. J Physiol. 2016;594(17):4837–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cobas M, Wilson A, Ernst B, Mancini SJC, Robson Macdonald H, Kemler R et al. Catenin Is Dispensable for Hematopoiesis and Lymphopoiesis. The Journal of Experimental Medicine J Exp Med ۙ The [Internet]. 2004 [cited 2024 Jan 14];199(2):221–9. Available from: http://www.jem.org/cgi/doi/https://doi.org/10.1084/jem.20031615.

Bolden JE, Tasdemir N, Dow LE, van Es JH, Wilkinson JE, Zhao Z et al. Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep [Internet]. 2014/09/23. 2014;8(6):1919–29. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25242322.

Guezguez B, Almakadi M, Benoit YD, Shapovalova Z, Rahmig S, Fiebig-Comyn A et al. GSK3 Deficiencies in Hematopoietic Stem Cells Initiate Pre-neoplastic State that Is Predictive of Clinical Outcomes of Human Acute Leukemia. Cancer Cell [Internet]. 2016/01/15. 2016;29(1):61–74. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26766591.

Delgado-Deida Y, Alula KM, Theiss AL. The influence of mitochondrial-directed regulation of Wnt signaling on tumorigenesis. [cited 2024 Jan 8]; Available from: https://academic.oup.com/gastro/article/8/3/215/5857782.

Hu K, Gu Y, Lou L, Liu L, Hu Y, Wang B et al. Galectin-3 mediates bone marrow microenvironment-induced drug resistance in acute leukemia cells via Wnt/β-catenin signaling pathway. J Hematol Oncol. 2015;8(1).

Wu L, Amarachintha S, Xu J, Oley F, Du W. Mesenchymal COX2-PG secretome engages NR4A-WNT signalling axis in haematopoietic progenitors to suppress anti-leukaemia immunity. Br J Haematol [Internet]. 2018 Nov 1 [cited 2024 Jan 14];183(3):445–56. Available from: https://onlinelibrary.wiley.com/doi/full/

留言 (0)

沒有登入
gif