Clinical feasibility study of early 30-minute dynamic FDG-PET scanning protocol for patients with lung lesions

Dimitrakopoulou-Strauss A. PET-based molecular imaging in personalized oncology: potential of the assessment of therapeutic outcome. Future Oncol. 2015;5:127–42.

Google Scholar 

Dimitrakopoulou-Strauss A, Pan L, Strauss LG. Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients. Cancer Imaging. 2012;12:283–9.

Article  PubMed  PubMed Central  Google Scholar 

Bertoldo A, Rizzo G, Veronese M. Deriving physiological information from PET images: from SUV to compartmental modeling. Clin T Ransl Imaging. 2014;2(3):239–51.

Article  Google Scholar 

Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumor imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.

Article  CAS  PubMed  Google Scholar 

Rahmim A, Lodge MA, Karakatsanis NA, Panin VY, Zhou Y, McMillan A, et al. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging. 2019;46(2):501–18. https://doi.org/10.1007/s00259-018-4153-6

Article  PubMed  Google Scholar 

Dias AH, Pedersen MF, Danielsen H, Munk OL, Gormsen LC. Clinical feasibility and impact of fully automated multiparametric PET imaging using direct patlak reconstruction: evaluation of 103 dynamic whole-body 18F-FDG PET/CT scans. Eur J Nucl Med Mol Imaging. 2021;48(3):837–50. https://doi.org/10.1007/s00259-020-05007-2

Article  PubMed  Google Scholar 

Torizuka T, Nobezawa S, Momiki S, Kasamatsu N, Kanno T, Yoshikawa E, et al. Short dynamic FDG-PET imaging protocol for patients with lung cancer. Eur J Nucl Med. 2000;27(10):1538–42. https://doi.org/10.1007/s002590000312

Article  CAS  PubMed  Google Scholar 

Wumener X, Zhang Y, Wang Z, Zhang M, Zang Z, Huang B, et al. Dynamic FDG-PET imaging for differentiating metastatic from non-metastatic lymph nodes of lung cancer. Front Oncol. 2022;12:1005924. https://doi.org/10.3389/fonc.2022.1005924

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu G, Yu H, Shi D, Hu P, Hu Y, Tan H, et al. Short-time total-body dynamic PET imaging performance in quantifying the kinetic metrics of 18F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging. 2022;49(8):2493–503. https://doi.org/10.1007/s00259-021-05500-2

Article  CAS  PubMed  Google Scholar 

Takesh M. The potential benefit by application of kinetic analysis of PET in the clinical oncology. ISRN Oncol. 2012;2012:349351. https://doi.org/10.5402/2012/349351

Gjedde A, Diemer NH. Autoradiographic determination of regional brain glucose content. J Cereb Blood Flow Metab. 1983;3:303–10.

Article  CAS  PubMed  Google Scholar 

Lammertsma AA, Hoekstra CJ, Giaccone G, Hoekstra OS. How should we analyse FDG PET studies for monitoring tumour response? Eur J Nucl Med Mol Imaging. 2006;33(Suppl S1):16–21.

Article  PubMed  Google Scholar 

Freedman M, Sundaram SK, Kurdziel K, Carrasquillo JA, Whatley M, Carson JM, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Eur J Nucl Med Mol Imaging. 2003;30:46–53.

Article  PubMed  Google Scholar 

Nakajo M, Ojima S, Kawakami H, Tani A, Hirayama A, Jinguji M, et al. Value of Patlak Ki images from (18)F-FDG-PET/CT for evaluation of the relationships between disease activity and clinical events in cardiac sarcoidosis. Sci Rep. 2021;11:2729.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Mankoff DA, Muzi M, Krohn KA. Quantitative positron emission tomography imaging to measure tumor response to therapy: what is the best method? Mol. Imaging Biol. 2003;5:281–5.

Article  Google Scholar 

Visser EP, Philippens ME, Kienhorst L, Kaanders JH, Corstens FH, de Geus-Oei LF, et al. Comparison of tumor volumes derived from glucose metabolic rate maps and SUV maps in dynamic 18F-FDG PET. J Nucl Med. 2008;49(6):892–8. https://doi.org/10.2967/jnumed.107.049585

Article  PubMed  Google Scholar 

Muzi M, O’Sullivan F, Mankoff DA, Doot RK, Pierce LA, Kurland BF, et al. Quantitative assessment of dynamic PET imaging data in cancer imaging. Magn Reson Imaging. 2012;30(9):1203–15. https://doi.org/10.1016/j.mri.2012.05.008

Article  PubMed  PubMed Central  Google Scholar 

Liu G, Xu H, Hu P, Tan H, Zhang Y, Yu H, et al. Kinetic metrics of 18F-FDG in normal human organs identified by systematic dynamic total-body positron emission tomography. Eur J Nucl Med Mol Imaging. 2021;48(8):2363–72. https://doi.org/10.1007/s00259-020-05124-y

Article  CAS  PubMed  Google Scholar 

Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Parametric imaging with dynamic PET for oncological applications: protocols, interpretation, current applications and limitations for clinical use. Semin Nucl Med. 2022;52(3):312–29. https://doi.org/10.1053/j.semnuclmed.2021.10.002

Article  PubMed  Google Scholar 

Van Sluis J, Yaqub M, Brouwers AH, Dierckx RAJO, Noordzij W, Boellaard R. Use of population input functions for reduced scan duration whole-body patlak 18F-FDG PET imaging. EJNMMI Phys. 2021;8(1):11. https://doi.org/10.1186/s40658-021-00357-8

Article  PubMed  PubMed Central  Google Scholar 

Wang H, Miao Y, Yu W, Zhu G, Wu T, Zhao X, et al. Improved clinical workflow for whole-body patlak parametric imaging using two short dynamic acquisitions. Front Oncol. 2022;12:822708. https://doi.org/10.3389/fonc.2022.822708

Article  PubMed  PubMed Central  Google Scholar 

Wang Z, Wu Y, Li X, Bai Y, Chen H, Ding J, et al. Comparison between a dual-time-window protocol and other simplified protocols for dynamic total-body 18F-FDG PET imaging. EJNMMI Phys. 2022;9(1):63. https://doi.org/10.1186/s40658-022-00492-w

Article  PubMed  PubMed Central  Google Scholar 

Wang T, Li B, Shi H, Li P, Deng Y, Wang S, et al. Short-term PET-derived kinetic estimation for the diagnosis of hepatocellular carcinoma: a combination of the maximum-slope method and dual-input three-compartment model. Insights Imaging. 2023;14(1):98. https://doi.org/10.1186/s13244-023-01442-5

Article  PubMed  PubMed Central  Google Scholar 

Indovina L, Scolozzi V, Capotosti A, Sestini S, Taralli S, Cusumano D, et al. Short 2-[18F]Fluoro-2-Deoxy-D-Glucose PET Dynamic acquisition protocol to evaluate the influx rate constant by regional patlak graphical analysis in patients with non-small-cell lung cancer. Front Med (Lausanne). 2021;8:725387. https://doi.org/10.3389/fmed.2021.725387

Article  PubMed  Google Scholar 

Wu J, Liu H, Ye Q, Gallezot JD, Naganawa M, Miao T, et al. Generation of parametric Ki images for FDG PET using two 5-min scans. Med Phys. 2021;48(9):5219–31. https://doi.org/10.1002/mp.15113

Article  CAS  PubMed  Google Scholar 

Chen Z, Cheng Z, Duan Y, Zhang Q, Zhang N, Gu F, et al. Accurate total-body Ki parametric imaging with shortened dynamic 18 F-FDG PET scan durations via effective data processing. Med Phys. 2023;50(4):2121–34. https://doi.org/10.1002/mp.15893

Article  CAS  PubMed  Google Scholar 

Visser EP, Kienhorst L, de Geus-Oei LF, Oyen WJ. Shortened dynamic FDG-PET protocol to determine the glucose metabolic rate in non-small cell lung carcinoma. 2008 IEEE Nuclear Sci Symp Conf Record Dresden Ger. 2008:4455–8. https://doi.org/10.1109/NSSMIC.2008.4774271

Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65. https://doi.org/10.1016/S0140-6736(16)32517-X

Article  PubMed  Google Scholar 

National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in oncology. Non-small Cell Lung Cancer version 4.2021. 2021:4.

palian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. https://doi.org/10.1056/NEJMoa1200690

Article  CAS  Google Scholar 

Hu B, Jin H, Li X, Wu X, Xu J, Gao Y. The predictive value of total-body PET/CT in non-small cell lung cancer for the PD-L1 high expression. Front Oncol. 2022;12:943933. https://doi.org/10.3389/fonc.2022.943933

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takada K, Toyokawa G, Okamoto T, Baba S, Kozuma Y, Matsubara T, et al. Metabolic characteristics of programmed cell death-ligand 1-expressing lung cancer on 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Cancer Med. 2017;6(11):2552–61. https://doi.org/10.1002/cam4.1215

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaira K, Shimizu K, Kitahara S, Yajima T, Atsumi J, Kosaka T, et al. 2-Deoxy-2-[fluorine-18] fluoro-d-glucose uptake on positron emission tomography is associated with programmed death ligand-1 expression in patients with pulmonary adenocarcinoma. Eur J Cancer. 2018;101:181–90. https://doi.org/10.1016/j.ejca.2018.06.022

Article  CAS  PubMed  Google Scholar 

Wu X, Huang Y, Zhao Q, Wang L, Song X, Li Y, et al. PD-L1 expression correlation with metabolic parameters of FDG PET/CT and clinicopathological characteristics in non-small cell lung cancer. EJNMMI Res. 2020;10(1):51. https://doi.org/10.1186/s13550-020-00639-9. PMID: 32430866; PMCID: PMC7237589.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood FlowMetab: off J Int Soc Cereb Blood Flow Metab. 1983;3:1–7. https://doi.org/10.1038/jcbfm.1983.1

Article  CAS  Google Scholar 

Lawson CL, Hanson RJ. Solving least squares problems. Linear Least Squares Linear Inequal Constraints. 1995;23:158–73. https://doi.org/10.1137/1.9781611971217

Article  Google Scholar 

留言 (0)

沒有登入
gif