Intrafamily heterooligomerization as an emerging mechanism of methyltransferase regulation

Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.

Article  ADS  CAS  PubMed  Google Scholar 

Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187:226–32.

Article  ADS  CAS  PubMed  Google Scholar 

Biggar KK, Li SS. Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol. 2015;16(1):5–17.

Article  CAS  PubMed  Google Scholar 

Malecki JM, Davydova E, Falnes PO. Protein methylation in mitochondria. J Biol Chem. 2022;298(4): 101791.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clarke SG. Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem Sci. 2013;38(5):243–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S, Hausmann S, Carlson SM, Fuentes ME, Francis JW, Pillai R, et al. METTL13 methylation of eEF1A increases translational output to promote tumorigenesis. Cell. 2019;176(3):491-504 e21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davegardh C, Garcia-Calzon S, Bacos K, Ling C. DNA methylation in the pathogenesis of type 2 diabetes in humans. Mol Metab. 2018;14:12–25.

Article  PubMed  PubMed Central  Google Scholar 

Balmik AA, Chinnathambi S. Methylation as a key regulator of Tau aggregation and neuronal health in Alzheimer’s disease. Cell Commun Signal. 2021;19(1):51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee J, An S, Lee SJ, Kang JS. Protein arginine methyltransferases in neuromuscular function and diseases. Cells. 2022;11(3):364.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tooley JG, Catlin JP, Tooley CES. METTLing in stem cell and cancer biology. Stem Cell Rev Rep. 2023;19(1):76–91.

Article  CAS  PubMed  Google Scholar 

Petrossian TC, Clarke SG. Uncovering the human methyltransferasome. Mol Cell Proteomics. 2011;10(1):M110 000976.

Article  PubMed  Google Scholar 

Lv F, Zhang T, Zhou Z, Gao S, Wong CC, Zhou JQ, et al. Structural basis for Sfm1 functioning as a protein arginine methyltransferase. Cell Discov. 2015;1:15037.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falnes PO, Malecki JM, Herrera MC, Bengtsen M, Davydova E. Human seven-beta-strand (METTL) methyltransferases—conquering the universe of protein lysine methylation. J Biol Chem. 2023;299(6): 104661.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu F, Mao C, Ding Y, Rui C, Wu L, Shi A, et al. Molecular and enzymatic profiles of mammalian DNA methyltransferases: structures and targets for drugs. Curr Med Chem. 2010;17:4052–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dillon SC, Zhang X, Trievel RC, Cheng X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005;6(8):227.

Article  PubMed  PubMed Central  Google Scholar 

Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395–402.

Article  CAS  PubMed  Google Scholar 

Jeltsch A, Jurkowska RZ. Allosteric control of mammalian DNA methyltransferases—a new regulatory paradigm. Nucleic Acids Res. 2016;44(18):8556–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okano M, Bell DW, Haber DA, Li E. DNA Methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

Article  CAS  PubMed  Google Scholar 

Aapola U, Kawasaki K, Scott HS, Ollila J, Vihinen M, Heino M, et al. Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics. 2000;65(3):293–8.

Article  CAS  PubMed  Google Scholar 

Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature. 2004;429:900–3.

Article  ADS  CAS  PubMed  Google Scholar 

Gao L, Emperle M, Guo Y, Grimm SA, Ren W, Adam S, et al. Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat Commun. 2020;11(1):3355.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Ren W, Gao L, Song J. Structural basis of DNMT1 and DNMT3A-mediated DNA methylation. Genes (Basel). 2018;9(12):620.

Article  PubMed  Google Scholar 

Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature. 2007;449(7159):248–51.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Zhang ZM, Lu R, Wang P, Yu Y, Chen D, Gao L, et al. Structural basis for DNMT3A-mediated de novo DNA methylation. Nature. 2018;554(7692):387–91.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Guo X, Wang L, Li J, Ding Z, Xiao J, Yin X, et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature. 2015;517(7536):640–4.

Article  ADS  CAS  PubMed  Google Scholar 

Holz-Schietinger C, Matje DM, Harrison MF, Reich NO. Oligomerization of DNMT3A controls the mechanism of de Novo DNA methylation. J Biol Chem. 2011;286:41479–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao L, Guo Y, Biswal M, Lu J, Yin J, Fang J, et al. Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations. Nat Commun. 2022;13(1):4249.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Lu J, Fang J, Zhu H, Liang KL, Khudaverdyan N, Song J. Structural basis for the allosteric regulation and dynamic assembly of DNMT3B. Nucleic Acids Res. 2023;51(22):12476–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kunert S, Emperle M, Adam S, Bracker J, Brockmeyer J, Rajavelu A, et al. The R736H cancer mutation in DNMT3A modulates the properties of the FF-subunit interface. Biochimie. 2023;208:66–74.

Article  CAS  PubMed  Google Scholar 

Jurkowska RZ, Rajavelu A, Anspach N, Urbanke C, Jankevicius G, Ragozin S, et al. Oligomerization and binding of the Dnmt3a DNA methyltransferase to parallel DNA molecules. J Biol Chem. 2011;286:24200–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malygin EG, Evdokimov AA, Hattman S. Dimeric/oligomeric DNA methyltransferases: an unfinished story. Biol Chem. 2009;390:835–44.

Article  CAS  PubMed  Google Scholar 

Kareta MS, Botello ZM, Ennis JJ, Chou C, Chedin F. Reconstitution and mechanism of the stimulation of de novo methylation by human DNMT3L. J Biol Chem. 2006;281:25893–902.

Article  CAS  PubMed  Google Scholar 

Tewary SK, Zheng YG, Ho MC. Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Cell Mol Life Sci. 2019;76(15):2917–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schapira M, Ferreira de Freitas R. Structural biology and chemistry of protein arginine methyltransferases. Medchemcomm. 2014;5(12):1779–88.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif