Dyssegmental dysplasia Rolland–Desbuquois type is caused by pathogenic variants in HSPG2 - a founder haplotype shared in five patients

Aleck KA, Grix A, Clericuzio C, Kaplan P, Adomian GE, Lachman R, et al. Dyssegmental dysplasias: clinical, radiographic, and morphologic evidence of heterogeneity. Am J Med Genet. 1987;27:295–312.

Article  CAS  PubMed  Google Scholar 

Handmaker SD, Campbell JA, Robinson LD, Chinwah O, Gorlin RJ. Dyssegmental dwarfism: a new syndrome of lethal dwarfism. Birth Defects Orig Artic Ser. 1977;13:79–90.

CAS  PubMed  Google Scholar 

Rolland JC, Laugier J, Grenier B, Desbuquois G. [Condrodystrophic dwarfism and cleft palate in a newborn]. Ann Pediatr. 1972;19:139–43.

CAS  Google Scholar 

Maldjian C, Chew FS, Klein R, Bonakdarpour A, McCarthy J, Kelly J. Kniest dysplasia: new radiographic features in the skeleton. Radio Case Rep. 2007;2:72–7.

Article  Google Scholar 

Nicole S, Davoine CS, Topaloglu H, Cattolico L, Barral D, Beighton P, et al. Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz-Jampel syndrome (chondrodystrophic myotonia). Nat Genet. 2000;26:480–3.

Article  CAS  PubMed  Google Scholar 

Arikawa-Hirasawa E, Wilcox WR, Le AH, Silverman N, Govindraj P, Hassell JR, et al. Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nat Genet. 2001;27:431–4.

Article  CAS  PubMed  Google Scholar 

Stum M, Davoine CS, Vicart S, Guillot-Noel L, Topaloglu H, Carod-Artal FJ, et al. Spectrum of HSPG2 (Perlecan) mutations in patients with Schwartz-Jampel syndrome. Hum Mutat. 2006;27:1082–91.

Article  CAS  PubMed  Google Scholar 

Nakazawa Y, Sasaki K, Mitsutake N, Matsuse M, Shimada M, Nardo T, et al. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat Genet. 2012;44:586–92.

Article  CAS  PubMed  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.

Article  PubMed  PubMed Central  Google Scholar 

Tischler G, Leonard S. biobambam: tools for read pair collation based algorithms on BAM files. Source Code Biol Med. 2014;9:13.

Article  PubMed Central  Google Scholar 

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

Article  PubMed  PubMed Central  Google Scholar 

Takeda JI, Nanatsue K, Yamagishi R, Ito M, Haga N, Hirata H, et al. InMeRF: prediction of pathogenicity of missense variants by individual modeling for each amino acid substitution. NAR Genom Bioinform. 2020;2:lqaa038.

Article  PubMed  PubMed Central  Google Scholar 

Maddirevula S, Alsahli S, Alhabeeb L, Patel N, Alzahrani F, Shamseldin HE, et al. Expanding the phenome and variome of skeletal dysplasia. Genet Med. 2018;20:1609–16.

Article  CAS  PubMed  Google Scholar 

Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11:377–94.

Article  CAS  PubMed  Google Scholar 

McMichael G, Bainbridge MN, Haan E, Corbett M, Gardner A, Thompson S, et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry. 2015;20:176–82.

Article  CAS  PubMed  Google Scholar 

Lavorgna TR, Gressett TE, Chastain WH, Bix GJ. Perlecan: a review of its role in neurologic and musculoskeletal disease. Front Physiol. 2023;14:1189731.

Article  PubMed  PubMed Central  Google Scholar 

Costell M, Mann K, Yamada Y, Timpl R. Characterization of recombinant perlecan domain I and its substitution by glycosaminoglycans and oligosaccharides. Eur J Biochem. 1997;243:115–21.

Article  CAS  PubMed  Google Scholar 

Dolan M, Horchar T, Rigatti B, Hassell JR. Identification of sites in domain I of perlecan that regulate heparan sulfate synthesis. J Biol Chem. 1997;272:4316–22.

Article  CAS  PubMed  Google Scholar 

Costell M, Sasaki T, Mann K, Yamada Y, Timpl R. Structural characterization of recombinant domain II of the basement membrane proteoglycan perlecan. FEBS Lett. 1996;396:127–31.

Article  CAS  PubMed  Google Scholar 

Schulze B, Sasaki T, Costell M, Mann K, Timpl R. Structural and cell-adhesive properties of three recombinant fragments derived from perlecan domain III. Matrix Biol. 1996;15:349–57.

Article  CAS  PubMed  Google Scholar 

Hopf M, Gohring W, Kohfeldt E, Yamada Y, Timpl R. Recombinant domain IV of perlecan binds to nidogens, laminin-nidogen complex, fibronectin, fibulin-2 and heparin. Eur J Biochem. 1999;259:917–25.

Article  CAS  PubMed  Google Scholar 

Arikawa-Hirasawa E, Rossi SG, Rotundo RL, Yamada Y. Absence of acetylcholinesterase at the neuromuscular junctions of perlecan-null mice. Nat Neurosci. 2002;5:119–23.

Article  CAS  PubMed  Google Scholar 

Gubbiotti MA, Neill T, Iozzo RV. A current view of perlecan in physiology and pathology: a mosaic of functions. Matrix Biol. 2017;57-58:285–98.

Article  CAS  PubMed  Google Scholar 

Martinez JR, Dhawan A, Farach-Carson MC. Modular proteoglycan perlecan/HSPG2: mutations, phenotypes, and functions. Genes. 2018;9:556.

Article  PubMed  PubMed Central  Google Scholar 

Hayes AJ, Farrugia BL, Biose IJ, Bix GJ, Melrose J. Perlecan, a multi-functional, cell-instructive, matrix-stabilizing proteoglycan with roles in tissue development has relevance to connective tissue repair and regeneration. Front Cell Dev Biol. 2022;10:856261.

Article  PubMed  PubMed Central  Google Scholar 

Arikawa-Hirasawa E. Impact of the heparan sulfate proteoglycan perlecan on human disease and health. Am J Physiol Cell Physiol. 2022;322:C1117–22.

Article  CAS  PubMed  Google Scholar 

Rieubland C, Jacquemont S, Mittaz L, Osterheld MC, Vial Y, Superti-Furga A, et al. Phenotypic and molecular characterization of a novel case of dyssegmental dysplasia, Silverman-Handmaker type. Eur J Med Genet. 2010;53:294–8.

Article  PubMed  Google Scholar 

Ladhani NN, Chitayat D, Nezarati MM, Laureane MC, Keating S, Silver RJ, et al. Dyssegmental dysplasia, Silverman-Handmaker type: prenatal ultrasound findings and molecular analysis. Prenat Diagn. 2013;33:1039–43.

Article  CAS  PubMed  Google Scholar 

Basalom S, Trakadis Y, Shear R, Azouz ME, De Bie I. Dyssegmental dysplasia, Silverman-Handmaker type: a challenging antenatal diagnosis in a dizygotic twin pregnancy. Mol Genet Genom Med. 2018;6:452–6.

Article  CAS  Google Scholar 

Kosaki R, Kubota M, Uehara T, Suzuki H, Takenouchi T, Kosaki K. Consecutive medical exome analysis at a tertiary center: diagnostic and health-economic outcomes. Am J Med Genet A. 2020;182:1601–7.

Article  PubMed  Google Scholar 

Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics. 2015;31:761–3.

Article  CAS  PubMed  Google Scholar 

Arikawa-Hirasawa E, Wilcox WR, Yamada Y. Dyssegmental dysplasia, Silverman-Handmaker type: unexpected role of perlecan in cartilage development. Am J Med Genet. 2001;106:254–7.

Article  CAS  PubMed  Google Scholar 

Unger S, Ferreira CR, Mortier GR, Ali H, Bertola DR, Calder A, et al. Nosology of genetic skeletal disorders: 2023 revision. Am J Med Genet A. 2023;191:1164–209.

Article  PubMed  Google Scholar 

Lin PY, Hung JH, Hsu CK, Chang YT, Sun YT. A novel pathogenic HSPG2 mutation in Schwartz-Jampel syndrome. Front Neurol. 2021;12:632336.

Article  PubMed  PubMed Central  Google Scholar 

Padmanabha H, Suthar R, Sankhyan N, Singhi P. Stiffness, facial dysmorphism, and skeletal abnormalities: Schwartz-Jampel syndrome 1A. J Pediatr. 2018;200:286–286.1.

Article  PubMed  Google Scholar 

Bauche S, Boerio D, Davoine CS, Bernard V, Stum M, Bureau C, et al. Peripheral nerve hyperexcitability with preterminal nerve and neuromuscular junction remodeling is a hallmark of Schwartz-Jampel syndrome. Neuromuscul Disord. 2013;23:998–1009.

Article  PubMed 

留言 (0)

沒有登入
gif