Adiponectin attenuates H2O2-induced apoptosis in chicken skeletal myoblasts through the lysosomal-mitochondrial axis

Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18:1106–1121. https://doi.org/10.1038/s41423-020-00630-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boya P, Andreau K, Poncet D, Zamzami N, Perfettini J-L, Metivier D et al (2003) Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 197:1323–1334. https://doi.org/10.1084/jem.20021952

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Feng X-C, Zhang Y, Liu X, Zhang W, Li C et al (2015) Effects of ultrasonic processing on caspase-3, calpain expression and myofibrillar structure of chicken during post-mortem ageing. Food Chem 177:280–287. https://doi.org/10.1016/j.foodchem.2014.11.064

Article  CAS  PubMed  Google Scholar 

Chen Q, Zhang J, Zhao K, Li W, Miao Q, Sun Y et al (2014) Lysosomal chymotrypsin induces mitochondrial fission in apoptotic cells by proteolytic activation of calcineurin. Protein Cell 5:643–647. https://doi.org/10.1007/s13238-014-0085-5

Article  PubMed  PubMed Central  Google Scholar 

Fennelly C, Amaravadi RK (2017) Lysosomal biology in cancer. Methods Mol Biol 1594:293–308. https://doi.org/10.1007/978-1-4939-6934-0_19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall SR, Blundon HL, Ladda MA, Robertson AW, Martinez-Farina CF, Jakeman DL et al (2015) Jadomycin breast cancer cytotoxicity is mediated by a copper-dependent, reactive oxygen species–inducing mechanism. Pharmacol Res Perspect 3:e00110. https://doi.org/10.1002/prp2.110

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang J, Wang Y, Guo X, He X, Liu W, Chen H et al (2022) N-acetylserotonin protects PC12 cells from hydrogen peroxide induced damage through ROS mediated PI3K / AKT pathway. Cell Cycle 21:2268–82. https://doi.org/10.1080/15384101.2022.2092817

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim N-Y, Trinh N-T, Ahn S-G, Kim S-A (2020) Cinnamaldehyde protects against oxidative stress and inhibits the TNF-α-induced inflammatory response in human umbilical vein endothelial cells. Int J Mol Med 46:449–457. https://doi.org/10.3892/ijmm.2020.4582

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kita S, Maeda N, Shimomura I (2019) Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J Clin Invest 129:4041–9. https://doi.org/10.1172/JCI129193

Article  PubMed  PubMed Central  Google Scholar 

Li R, Luo R, Luo Y, Hou Y, Wang J, Zhang Q et al (2022) Biological function, mediate cell death pathway and their potential regulated mechanisms for post-mortem muscle tenderization of PARP1: a review. Front Nutr 9:1093939. https://doi.org/10.3389/fnut.2022.1093939

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liemburg-Apers DC, Willems PHGM, Koopman WJH, Grefte S (2015) Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol 89:1209–1226. https://doi.org/10.1007/s00204-015-1520-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Palanivel R, Rai E, Park M, Gabor TV, Scheid MP et al (2015) Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during high-fat diet feeding in mice. Diabetes 64:36–48. https://doi.org/10.2337/db14-0267

Article  CAS  PubMed  Google Scholar 

Lomiwes D, Farouk MM, Wiklund E, Young OA (2014) Small heat shock proteins and their role in meat tenderness: a review. Meat Sci 96:26–40. https://doi.org/10.1016/j.meatsci.2013.06.008

Article  CAS  PubMed  Google Scholar 

Man SM, Kanneganti T-D (2016) Regulation of lysosomal dynamics and autophagy by CTSB/cathepsin B. Autophagy 12:2504–2505. https://doi.org/10.1080/15548627.2016.1239679

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohashi K, Ouchi N, Matsuzawa Y (2012) Anti-inflammatory and anti-atherogenic properties of adiponectin. Biochimie 94:2137–2142. https://doi.org/10.1016/j.biochi.2012.06.008

Article  CAS  PubMed  Google Scholar 

Papadopoulos C, Meyer H (2017) Detection and clearance of damaged lysosomes by the endo-lysosomal damage response and lysophagy. Curr Biol 27:R1330–R1341. https://doi.org/10.1016/j.cub.2017.11.012

Article  CAS  PubMed  Google Scholar 

Qiu W, Wu H, Hu Z, Wu X, Tu M, Fang F et al (2021) Identification and characterization of a novel adiponectin receptor agonist adipo anti-inflammation agonist and its anti-inflammatory effects in vitro and in vivo. Br J Pharmacol 178:280–297. https://doi.org/10.1111/bph.15277

Article  CAS  PubMed  Google Scholar 

Ren Y, Li Y, Yan J, Ma M, Zhou D, Xue Z et al (2017) Adiponectin modulates oxidative stress-induced mitophagy and protects C2C12 myoblasts against apoptosis. Sci Rep 7:3209. https://doi.org/10.1038/s41598-017-03319-2

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Repnik U, Turk B (2010) Lysosomal–mitochondrial cross-talk during cell death. Mitochondrion 10:662–669. https://doi.org/10.1016/j.mito.2010.07.008

Article  CAS  PubMed  Google Scholar 

Seabright AP, Fine NHF, Barlow JP, Lord SO, Musa I, Gray A et al (2020) AMPK activation induces mitophagy and promotes mitochondrial fission while activating TBK1 in a PINK1-Parkin independent manner. FASEB J 34:6284–6301. https://doi.org/10.1096/fj.201903051R

Article  CAS  PubMed  Google Scholar 

Shrestha A, Nepal S, Kim MJ, Chang JH, Kim S-H, Jeong G-S et al (2016) Critical role of AMPK/FoxO3A axis in globular adiponectin-induced cell cycle arrest and apoptosis in cancer cells: FoxO3A in cancer cell death by adiponectin. J Cell Physiol 231:357–369. https://doi.org/10.1002/jcp.25080

Article  CAS  PubMed  Google Scholar 

Šimják P, Cinkajzlová A, Anderlová K, Pařízek A, Mráz M, Kršek M et al (2018) The role of obesity and adipose tissue dysfunction in gestational diabetes mellitus. J Endocrinol 238:R63-77. https://doi.org/10.1530/JOE-18-0032

Article  PubMed  Google Scholar 

Tao L, Gao E, Jiao X, Yuan Y, Li S, Christopher TA et al (2007) Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation 115:1408–1416. https://doi.org/10.1161/CIRCULATIONAHA.106.666941

Article  CAS  PubMed  Google Scholar 

Terman A, Gustafsson B, Brunk UT (2006) The lysosomal–mitochondrial axis theory of postmitotic aging and cell death. Chem Biol Interact 163:29–37. https://doi.org/10.1016/j.cbi.2006.04.013

Article  CAS  PubMed  Google Scholar 

Villarreal-Molina MT, Antuna-Puente B (2012) Adiponectin: anti-inflammatory and cardioprotective effects. Biochimie 94:2143–2149. https://doi.org/10.1016/j.biochi.2012.06.030

Article  CAS  PubMed  Google Scholar 

Wang H, Zhu J, Jiang L, Shan B, Xiao P, Ai J et al (2020) Mechanism of Heshouwuyin inhibiting the Cyt c/Apaf-1/Caspase-9/Caspase-3 pathway in spermatogenic cell apoptosis. BMC Complement Med Ther 20:180. https://doi.org/10.1186/s12906-020-02904-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L-L, Yu Q-L, Han L, Ma X-L, Song R-D, Zhao S-N et al (2018) Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat. Food Chem 244:394–402. https://doi.org/10.1016/j.foodchem.2017.10.034

Article  CAS  PubMed  Google Scholar 

Wang T, Feng X, Li L, Luo J, Liu X, Zheng J et al (2022) Effects of quercetin on tenderness, apoptotic and autophagy signalling in chickens during post-mortem ageing. Food Chem 383:132409. https://doi.org/10.1016/j.foodchem.2022.132409

Article  CAS  PubMed  Google Scholar 

Wang Y, Gao E, Tao L, Lau WB, Yuan Y, Goldstein BJ et al (2009) AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/antinitrative protection of adiponectin. Circulation 119:835–844. https://doi.org/10.1161/CIRCULATIONAHA.108.815043

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Z, Ma J, Li X, Wu Y, Shi H, Chen Y et al (2021) Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and reactive oxygen species-dependent ferroptosis. British J Pharmacology 178:1133–1148. https://doi.org/10.1111/bph.15350

Article  CAS  Google Scholar 

Wu Z, Wang H, Fang S, Xu C (2018) Roles of endoplasmic reticulum stress and autophagy on H2O2-induced oxidative stress injury in HepG2 cells. Mol Med Rep 18:4163–4174. https://doi.org/10.3892/mmr.2018.9443

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif