CircACTR2 attenuated the effects of tetramethylpyrazine on human kidney cell injury

Beck KF, Pfeilschifter J (2021) Gasotransmitter synthesis and signalling in the renal glomerulus. Implications for glomerular diseases. Cell Signal 77:109823

Article  CAS  PubMed  Google Scholar 

Chen Y, He W, Ouyang H et al (2019) Efficacy and safety of tetramethylpyrazine phosphate on pulmonary hypertension: study protocol for a randomized controlled study. Trials 20(1):725

Article  CAS  PubMed  PubMed Central  Google Scholar 

Danduga R, Dondapati SR, Kola PK et al (2018) Neuroprotective activity of tetramethylpyrazine against 3-nitropropionic acid induced Huntington’s disease-like symptoms in rats. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie 105:1254–1268

Article  CAS  PubMed  Google Scholar 

Donate-Correa J, Luis-Rodriguez D, Martin-Nunez E et al (2020) : Inflammatory targets in Diabetic Nephropathy. J Clin Med 9(2)

Dugbartey GJ (2017) Diabetic nephropathy: a potential savior with ‘rotten-egg’ smell. Pharmacol Rep 69(2):331–339

Article  CAS  PubMed  Google Scholar 

Feliers D, Lee HJ, Kasinath BS (2016) Hydrogen sulfide in renal physiology and disease. Antioxid Redox Signal 25(13):720–731

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong X, Ivanov VN, Hei TK (2016) 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-kappaB, AP-1 and MAPK pathways in human proximal tubular cells. Arch Toxicol 90(9):2187–2200

Article  CAS  PubMed  Google Scholar 

Huang S, Liu F, Niu Q et al (2013) GLIPR-2 overexpression in HK-2 cells promotes cell EMT and migration through ERK1/2 activation. PLoS ONE 8(3):e58574

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Jing M, Cen Y, Gao F et al (2021) Nephroprotective effects of Tetramethylpyrazine Nitrone TBN in Diabetic kidney disease. Front Pharmacol 12:680336

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Wang Q, Ren Y et al (2019a) Tetramethylpyrazine protects retinal ganglion cells against H2O2induced damage via the microRNA182/mitochondrial pathway. Int J Mol Med 44(2):503–512

CAS  PubMed  PubMed Central  Google Scholar 

Li HM, Ma XL, Li HG (2019b) Intriguing circles: conflicts and controversies in circular RNA research. Wiley Interdisciplinary Reviews RNA 10(5):e1538

Article  PubMed  Google Scholar 

Liu J, Liu T, Wang X et al (2017) Circles reshaping the RNA world: from waste to treasure. Mol Cancer 16(1):58

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martini S, Eichinger F, Nair V et al (2008) Defining human diabetic nephropathy on the molecular level: integration of transcriptomic profiles with biological knowledge. Reviews in Endocrine & Metabolic Disorders 9(4):267–274

Article  CAS  Google Scholar 

Michel HE, Tadros MG, Esmat A et al (2017) Tetramethylpyrazine ameliorates Rotenone-Induced Parkinson’s disease in rats: involvement of its anti-inflammatory and anti-apoptotic actions. Mol Neurobiol 54(7):4866–4878

Article  CAS  PubMed  Google Scholar 

Necula L, Matei L, Dragu D et al (2019) Recent advances in gastric cancer early diagnosis. World J Gastroenterol 25(17):2029–2044

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng F, Gong W, Li S et al (2020) circRNA_010383 acts as a sponge for miR-135a and its downregulated expression contributes to Renal Fibrosis in Diabetic Nephropathy. Diabetes

Phillips AO, Steadman R (2002) Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury. Histol Histopathol 17(1):247–252

CAS  PubMed  Google Scholar 

Rai U, Kosuru R, Prakash S et al (2019a) Tetramethylpyrazine prevents diabetes by activating PI3K/Akt/GLUT-4 signalling in animal model of type-2 diabetes. Life Sci 236:116836

Article  CAS  PubMed  Google Scholar 

Rai U, Kosuru R, Prakash S et al (2019b) Tetramethylpyrazine alleviates diabetic nephropathy through the activation of akt signalling pathway in rats. Eur J Pharmacol 865:172763

Article  CAS  PubMed  Google Scholar 

So EJ, Kim HJ, Kim CW (2008) Proteomic analysis of human proximal tubular cells exposed to high glucose concentrations. Proteom Clin Appl 2(7–8):1118–1126

Article  CAS  Google Scholar 

Su J, Ren J, Chen H et al (2020) : MicroRNA-140-5p ameliorates the high glucose-induced apoptosis and inflammation through suppressing TLR4/NF-kappaB signaling pathway in human renal tubular epithelial cells. Biosci Rep 40(3)

Tian L, Fu P, Zhou M et al (2021) Dandelion sterol improves diabetes mellitus-induced renal injury in in vitro and in vivo study. Food Sci Nutr 9(9):5183–5197

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toth-Manikowski S, Atta MG (2015) Diabetic kidney disease: pathophysiology and therapeutic targets. J Diabetes Res 2015:697010

Article  PubMed  PubMed Central  Google Scholar 

Wang M, Xie F, Lin J et al (2021) Diagnostic and prognostic value of circulating CircRNAs in Cancer. Front Med 8:649383

Article  Google Scholar 

Wang Z, Yu J, Hao D et al (2022) Transcriptomic signatures responding to PKM2 activator TEPP-46 in the hyperglycemic human renal proximal epithelial tubular cells. Front Endocrinol 13:965379

Article  Google Scholar 

Wen S, Li S, Li L et al (2020) circACTR2: a novel mechanism regulating high glucose-Induced Fibrosis in Renal tubular cells via Pyroptosis. Biol Pharm Bull 43(3):558–564

Article  CAS  PubMed  Google Scholar 

Yang QH, Liang Y, Xu Q et al (2011) Protective effect of tetramethylpyrazine isolated from Ligusticum chuanxiong on nephropathy in rats with streptozotocin-induced diabetes. Phytomedicine: Int J Phytotherapy Phytopharmacology 18(13):1148–1152

Article  CAS  Google Scholar 

Zhao D, Jia J, Shao H (2017) miR-30e targets GLIPR-2 to modulate diabetic nephropathy: in vitro and in vivo experiments. J Mol Endocrinol 59(2):181–190

Article  CAS  PubMed  Google Scholar 

Zhong Y, Du Y, Yang X et al (2018) Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer 17(1):79

Article  PubMed  PubMed Central  Google Scholar 

Zhou Y, Zhou Z, Ji Z et al (2020) Tetramethylpyrazine reduces prostate cancer malignancy through inactivation of the DPP10AS1/CBP/FOXM1 signaling pathway. Int J Oncol 57(1):314–324

CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif