Exploring the significance of caspase-cleaved tau in tauopathies and as a complementary pathology to phospho-tau in Alzheimer’s disease: implications for biomarker development and therapeutic targeting

Silva MC, Haggarty SJ (2020) Tauopathies: deciphering Disease mechanisms to develop effective therapies. Int J Mol Sci 21. https://doi.org/10.3390/ijms21238948

Holper S, Watson R, Yassi N (2022) Tau as a biomarker of Neurodegeneration. Int J Mol Sci 23. https://doi.org/10.3390/ijms23137307

Ossenkoppele R, van der Kant R, Hansson O (2022) Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol 21:726–734. https://doi.org/10.1016/S1474-4422(22)00168-5

Article  CAS  PubMed  Google Scholar 

Opland CK, Bryan MR, Harris B, McGillion-Moore J, Tian X, Chen Y, Itano MS, Diering GH, Meeker RB, Cohen TJ (2023) Activity-dependent tau cleavage by caspase-3 promotes neuronal dysfunction and synaptotoxicity. iScience 26:106905. https://doi.org/10.1016/j.isci.2023.106905

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, Mengel D, Keshavan A, Rissman RA, Billinton A, Perkinton M, Percival-Alwyn J, Schultz A, Properzi M, Johnson K al (2019) Learnings about the complexity of extracellular tau aid development of a blood-based screen for Alzheimer’s disease. Alzheimers Dement 15:487–496. https://doi.org/10.1016/j.jalz.2018.09.010

Article  PubMed  Google Scholar 

Ramcharitar J, Albrecht S, Afonso VM, Kaushal V, Bennett DA, Leblanc AC (2013) Cerebrospinal fluid tau cleaved by caspase-6 reflects brain levels and cognition in aging and Alzheimer disease. J Neuropathol Exp Neurol 72:824–832. https://doi.org/10.1097/NEN.0b013e3182a0a39f

Article  CAS  PubMed  Google Scholar 

Theofilas P, Piergies AMH, Oh I, Lee YB, Li SH, Pereira FL, Petersen C, Ehrenberg AJ, Eser RA, Ambrose AJ al (2022) Caspase-6-cleaved tau is relevant in Alzheimer’s disease and marginal in four-repeat tauopathies: diagnostic and therapeutic implications. Neuropathol Appl Neurobiol 48:e12819. https://doi.org/10.1111/nan.12819

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kovacs GG (2017) Tauopathies. Handb Clin Neurol 145:355–368. https://doi.org/10.1016/B978-0-12-802395-200025– 0

Article  PubMed  Google Scholar 

Karch CM, Kao AW, Karydas A, Onanuga K, Martinez R, Argouarch A, Wang C, Huang C, Sohn PD Bowles KR (2019) a Comprehensive Resource for Induced Pluripotent Stem cells from patients with primary tauopathies. Stem cell Rep 13: 939–955 https://doi.org/10.1016/j.stemcr.2019.09.006

(2023) Alzheimer’s disease facts and figures. Alzheimers Dement: Doi https://doi.org/10.1002/alz.13016

Nolan A, De Paula Franca Resende E, Petersen C, Neylan K, Spina S, Huang E, Seeley W, Miller Z, Grinberg LT (2019) Astrocytic tau deposition is frequent in typical and atypical Alzheimer Disease presentations. J Neuropathol Exp Neurol 78:1112–1123. https://doi.org/10.1093/jnen/nlz094

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodriguez RD, Suemoto CK, Molina M, Nascimento CF, Leite RE, de Lucena Ferretti-Rebustini RE, Farfel JM, Heinsen H, Nitrini R, Ueda K et al (2016) Argyrophilic Grain Disease: Demographics, Clinical, and Neuropathological Features From a Large Autopsy Study. J Neuropathol Exp Neurol 75: 628–635 https://doi.org/10.1093/jnen/nlw034

Swallow DMA, Zheng CS, Counsell CE (2022) Systematic review of Prevalence studies of Progressive Supranuclear Palsy and Corticobasal Syndrome. Mov Disord Clin Pract 9:604–613. https://doi.org/10.1002/mdc3.13489

Article  PubMed  PubMed Central  Google Scholar 

Driver-Dunckley ED, Zhang N, Serrano GE, Dunckley NA, Sue LI, Shill HA, Mehta SH, Belden C, Tremblay C, Atri Aet al et al (2023) Low clinical sensitivity and unexpectedly high incidence for neuropathologically diagnosed progressive supranuclear palsy. J Neuropathol Exp Neurol 82:438–451. https://doi.org/10.1093/jnen/nlad025

Article  PubMed  Google Scholar 

Alquezar C, Arya S, Kao AW (2020) Tau post-translational modifications: dynamic transformers of tau function, degradation, and aggregation. Front Neurol 11:595532. https://doi.org/10.3389/fneur.2020.595532

Article  PubMed  Google Scholar 

Avila J, Pallas N, Bolós M, Sayas CL, Hernandez F (2016) Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies. Expert Opin Ther Targets 20:653–661. https://doi.org/10.1517/14728222.2016.1131269

Article  CAS  PubMed  Google Scholar 

Lothrop AP, Torres MP, Fuchs SM (2013) Deciphering post-translational modification codes. FEBS Lett 587:1247–1257. https://doi.org/10.1016/j.febslet.2013.01.047

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zilka N, Kovacech B, Barath P, Kontsekova E, Novák M (2012) The self-perpetuating tau truncation circle. Biochem Soc Trans 40:681–686. https://doi.org/10.1042/BST20120015

Article  CAS  PubMed  Google Scholar 

Boyarko B, Hook V (2021) Human tau isoforms and proteolysis for production of toxic tau fragments in Neurodegeneration. Front Neurosci 15:702788. https://doi.org/10.3389/fnins.2021.702788

Article  PubMed  PubMed Central  Google Scholar 

Wang XJ, Cao Q, Zhang Y, Su XD (2015) Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 55:553–572. https://doi.org/10.1146/annurev-pharmtox-010814-124414

Article  CAS  PubMed  Google Scholar 

Graham RK, Ehrnhoefer DE, Hayden MR (2011) Caspase-6 and neurodegeneration. Trends Neurosci 34:646–656. https://doi.org/10.1016/j.tins.2011.09.001

Article  CAS  PubMed  Google Scholar 

Van Opdenbosch N, Lamkanfi M (2019) Caspases in cell death, inflammation, and Disease. Immunity 50:1352–1364. https://doi.org/10.1016/j.immuni.2019.05.020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo H, Albrecht S, Bourdeau M, Petzke T, Bergeron C, LeBlanc AC (2004) Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am J Pathol 165:523–531. https://doi.org/10.1016/S0002-9440(10)63317-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375. https://doi.org/10.1056/NEJMra022366

Article  CAS  PubMed  Google Scholar 

Olesen MA, Quintanilla RA (2023) Pathological impact of tau proteolytical process on neuronal and mitochondrial function: a crucial role in Alzheimer’s Disease. Mol Neurobiol 60:5691–5707. https://doi.org/10.1007/s12035-023-03434-4

Article  CAS  PubMed  Google Scholar 

Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP, LaFerla FM, Rohn TT, Cotman CW (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 114:121–130. https://doi.org/10.1172/JCI20640

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cotman CW, Poon WW, Rissman RA, Blurton-Jones M (2005) The role of caspase cleavage of tau in Alzheimer disease neuropathology. J Neuropathol Exp Neurol 64:104–112. https://doi.org/10.1093/jnen/64.2.104

Article  CAS  PubMed  Google Scholar 

Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, LaPointe N al (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci U S A 100:10032–10037. https://doi.org/10.1073/pnas.1630428100

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Reinhardt L, Musacchio F, Bichmann M, Behrendt A, Ercan-Herbst E, Stein J, Becher I, Haberkant P, Mader J, Schöndorf DC al (2023) Dual truncation of tau by caspase-2 accelerates its CHIP-mediated degradation. Neurobiol Dis 182:106126. https://doi.org/10.1016/j.nbd.2023.106126

Article  CAS  PubMed  Google Scholar 

Zhao X, Kotilinek LA, Smith B, Hlynialuk C, Zahs K, Ramsden M, Cleary J, Ashe KH (2016) Caspase-2 cleavage of tau reversibly impairs memory. Nat Med 22:1268–1276. https://doi.org/10.1038/nm.4199

Article  CAS  PubMed  Google Scholar 

Corsetti V, Amadoro G, Gentile A, Capsoni S, Ciotti MT, Cencioni MT, Atlante A, Canu N, Rohn TT, Cattaneo A al (2008) Identification of a caspase-derived N-terminal tau fragment in cellular and animal Alzheimer’s disease models. Mol Cell Neurosci 38:381–392. https://doi.org/10.1016/j.mcn.2008.03.011

Article  CAS  PubMed  Google Scholar 

Horowitz PM, Patterson KR, Guillozet-Bongaarts AL, Reynolds MR, Carroll CA, Weintraub ST, Bennett DA, Cryns VL, Berry RW, Binder LI (2004) Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease. J Neurosci 24:7895–7902. https://doi.org/10.1523/JNEUROSCI.1988-04.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conze C, Rierola M, Trushina NI, Peters M, Janning D, Holzer M, Heinisch JJ, Arendt T, Bakota L, Brandt R (2022) Caspase-cleaved tau is senescence-associated and induces a toxic gain of function by putting a brake on axonal transport. Mol Psychiatry 27:3010–3023. https://doi.org/10.1038/s41380-022-01538-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pérez MJ, Ibarra-García-Padilla R, Tang M, Porter GA, Johnson GVW, Quintanilla RA (2023) Caspase-3 cleaved tau impairs mitochondrial function through the opening of the mitochondrial permeability transition pore. Biochim Biophys Acta Mol Basis Dis 1870:166898. https://doi.org/10.1016/j.bbadis.2023.166898

Article  CAS  PubMed  Google Scholar 

Pérez MJ, Vergara-Pulgar K, Jara C, Cabezas-Opazo F, Quintanilla RA (2018) Caspase-cleaved tau Impairs Mitochondrial Dynamics in Alzheimer’s Disease. Mol Neurobiol 55:1004–1018.

留言 (0)

沒有登入
gif