Bajorath J. Pharmacophore. Encyclopaedia of Cancer 2017, pp.2849–2852.
Sahdev AK, Gupta P, Manral K, Rana P, Singh A. An overview on pharmacophore: their significance and importance for the activity of drug design. Res J Pharmac Tech. 2023;16(3):1496–502. https://doi.org/10.52711/0974-360X.2023.00246.
Baig MH, Ahmad K, Roy S, Ashraf JM, Adil M, Sidiqqui MH, et al. Computer aided drug design: success and limitations. Curr Pharmaceut Desig. 2016;22:572–81. https://doi.org/10.2174/1381612822666151125000550.
Williams DP, Naisbitt DJ. Toxicophores: groups and metabolic routes associated with increased safety risk. Curr Opin Drug Discor. 2002;5(1):104–15. PMID: 11865664.
Sharma B, Chenthamarakshan V, Dhurandhar A, Pereira S, Hendler JA, Dordik JS, et al. Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Sci Rep. 2023;13:4908. https://doi.org/10.1038/s41598-023-31169-8.
Tonini M, Lipolina L, Poluzzi E, Cremas F, Corazza GR, De Ponti F. Review article: clinical limitations of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics. Aliment Pharmacol Ther. 2004;19:379–90. https://doi.org/10.1111/j.1365-2036.2004.01867.x.
De Ponti F. Pharmacology of serotonin: what a clinician should know. Gut 53 (10): https://doi.org/10.1136/gut2003.035568.
Che J, Wang Z, Sheng H, Huang F, Dong X, Hu T, et al. Ligand-based pharmacophore model for the discovery of novel CXCR2 antagonists as anti-cancer metastatic agents. R Soc Open Sci. 2018;5(7):1–11. https://doi.org/10.1098/rsos.180176.
Dror O, Scheidman-Duhovny D, Inbar Y, Nussinov R, Wolfsm HJ. A novel approach for efficient pharmacophore-based virtual screening: method and applications. J Chem Inf Model. 2009;49(10):2333–43. https://doi.org/10.1021/ci900263d.
Article CAS PubMed PubMed Central Google Scholar
He G, Gong B, Li J, Song T, Li S, Lu X. An improved receptor-based pharmacophore generation algorithm guided by atomic chemical characteristics and hybridization types. Front Pharmacol.2018; 9(1463): 1–9. | https://doi.org/10.3389/fphar.2018.01463.
AbdEl Fattah LI, Zickri MB, Aal LA, Heikal O, Osama E, et al. The effect of thymoquinone, α7 receptor agonist and α7 receptor allosteric modulator on the cerebral cortex in experimentally induced Alzheimer’s disease in relation to MSCs activation. Int J Stem Cells. 2016;9(2):230–8. https://doi.org/10.15283/ijsc16021.
Article CAS PubMed Central Google Scholar
Unal G, Erdogan B. Neuroprotective effects of thymoquinone against ketamine –and MK-801-induced neurotoxicity in SH-SY5Y cells: from the perspective of glutamatergic dysfunction in schizophremia. Clin Exp Health Sci. 2020;10(2):178–82. https://doi.org/10.33808/clinexphealthsci.734422.
De Santis E, Minicozzi V, Rossi G, Stellato F, Morante S. Is styrene competitive for dopamine receptor binding? J Biomol Concept. 2022;13(1):200–6. https://doi.org/10.1515/bmc-2022-0016.
Gopal KV, Wu C, Moore EJ, Gross W. Assessment of styrene oxide neurotoxicity using in vitro auditory cortex networks. ISRN Otolaryngol. 2011;204804. https://doi.org/10.5402/2011/204804.
Dipple A, Levy LS, Lawley PD. Comparative carcinogenicity of alkylating agents: comparisons of a series of alkyl and aralkyl bromides of differing chemical reactivities as inducers of sarcoma at the site of a single injection. rat Carcinog. 1981;2(2):103–7. https://doi.org/10.1093/carcin/2.2.103.
Dogne JM, Rolin S, de Leval X, Benoit P, Neven P, Delarge J, et al. Pharmacology of the thromboxane receptor antagonist and thromboxane synthase inhibitor BM-531. Cardiovasc Drug Rev. 2001;19(2):87–96. https://doi.org/10.1111/j.1527-3466.2001.tb00057.x.
Mozaffari S, Nikfar S, Abdollahi M. Efficacy and tolerability of renzapride in irritable bowel syndrome: a meta-analysis of randomized, controlled clinical trials including 2528 patients. Arch Med Sci. 2014;10(1):10–8. https://doi.org/10.5114/aoms.2014.40729.
Article CAS PubMed PubMed Central Google Scholar
DiPalma JR. Metoclopramide: a dopamine receptor antagonist. Am Fam Physician. 1990;41(3):919–24. PMID: 2407079.
Nisijima K, Yoshino T, Yui K, Katoh S. Potent serotonin (5-HT) (2A) receptor antagonists completely prevent the development of hyperthermia in an animal model of the 5-HT syndrome. Brain Res. 2001;890(1):23–31. https://doi.org/10.1016/s0006-8993(00)03020-1.
Article CAS PubMed Google Scholar
Orr MJ, Cao AB, Wang CT, Gaisin A, Csakai A, Friswold AP, et al. Discovery of highly potent serotonin 5-HT2 receptor agonists inspired by heteroyohimbine natural products. ACS Med Chem Lett. 2022;13(4):648–57. https://doi.org/10.1021/acsmedchemlett.1c00694.
Article CAS PubMed PubMed Central Google Scholar
Elahi B, Phielipp N, Chen R. N-Methyl-D-Aspartate antagonista in levodopa induced dyskinesia: a meta-analysis. Can J Neurol Sci. 2012;39(4):465–72. https://doi.org/10.1017/s0317167100013974.
Suzuki H, Gen K, Inoue Y. Comparison of the anti-dopamine D2 and anti-serotonin 5-HT (2A) activities of chlorpromazine, bromperidol, haloperidol and second-generation antipsychotic parent compounds and metabolites thereof. J Psychopharmacol. 2013;27(4):396–400. Epub 2013 Feb 20.
Article CAS PubMed Google Scholar
Broadly KJ, Kelly DR. Muscarinic receptor agonists and antagonists. Molecules. 2001;6(3):142–93. https://doi.org/10.3390/60300142.
Abbott FV, Hellemans KGC. Phenacetin, acetaminophen and dipyrone: analgesic and rewarding effects. Behav Brain Res. 2000;112(1–2):177–86. https://doi.org/10.1016/s0166-4328(00)00179-0.
Article CAS PubMed Google Scholar
Otero R, Seoane S, Sigueiro R, Belorusova AY, Maestro MA, Perez-Fernandez R. Carborane-based design of a potent vitamin D receptor agonist. Chem Sci. 2016;7(2):1033–7. https://doi.org/10.1039/c5sc03084f.
Article CAS PubMed Google Scholar
Rajpal RK, Ross B, Rajpal SD, Hoang K. Bromfenac ophthalmic solution for the treatment of postoperative ocular pain and inflammation: safety, efficacy, and patient adherence. Patient Prefer Adherence. 2014;8:925–31. https://doi.org/10.2147/PPA.S46667.
Article PubMed PubMed Central Google Scholar
Ma L, Zhou Y, Yang D, Wang M-W, Lu W, Jin J. Synthesis of hydantoin androgen receptor antagonists and study on their antagonistic activity. Molecules. 2022;27(18):5867. https://doi.org/10.3390/molecules27185867.
Article CAS PubMed PubMed Central Google Scholar
Li X, Pearce RA. Effects of halothane on GABA(A) receptor kinetics: evidence for slowed agonist unbinding. J Neurosci. 2000;20(3):899–907. https://doi.org/10.1523/JNEUROSCI.20-03-00899.2000.
Article CAS PubMed PubMed Central Google Scholar
Giovannitti JA, Thoms SM, Crawford JJ. Alpha-2 adrenergic receptor agonists: a review of current clinical applications. Anesth Prog. 2015;62(1):31–8. https://doi.org/10.2344/0003-3006-62.1.31.
Article PubMed PubMed Central Google Scholar
Scholler-Gyure M, Kakuda TN, De Smedt G, Vanaken H, Bouche MP, Peeters M, et al. A pharmacokinetic study of etravirine (TMC125) co-administered with ranitidine and omeprazole in HIV-negative volunteers. Br J Clin Pharmacol. 2008;66(4):508–16. https://doi.org/10.1111/j.1365-2125.2008.03214.x. Epub 2008 Apr 25.
Article CAS PubMed PubMed Central Google Scholar
Nielsen ST. Binding of [3H]ICIA 5165, an H2-receptor antagonist to guinea pig gastric mucosa. Agent Act. 1986;18(5–6):524–31. https://doi.org/10.1007/BF01964958.
Asra R, Jones AM. Green electrosynthesis of drug metabolites. Toxicol Res (Camb). 2023;12(2):150–77. https://doi.org/10.1093/toxres/tfad009.
Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S. Paracetamol: new vistas of an old drug. CNS Drug Rev. 2006;12(3–4):250–75. https://doi.org/10.1111/j.1527-3458.2006.00250.x.
Article CAS PubMed Google Scholar
`Roca-Vinardell A, Berrocoso E, Llorca-Torralb M, Garcia-Partida JA, Gibert-Rahola J, Mico JA. Involvement of 5-HT1A/1B receptor in the antinociceptive effect of Paracetamol in the rat formalin test. Neurobiol Pain. 2018;3:15–21. https://doi.org/10.1016/j.ynpai.2018.01.004.
Article CAS PubMed Google Scholar
Wang M, Peng B, Wang GY, Zhao N, Xiong Z. Multiresidue analysis of tetracycline and β-receptor agonists in chicken by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry: comparison with QuE ChERS extraction method and ultrasound assisted extraction. J Food Comp Analys. 2019;85:103339. https://doi.org/10.1016/j.jfca.2019.103339.
留言 (0)