Genetic and functional modulation by agonist MRS5698 and allosteric enhancer LUF6000 at the native A3 adenosine receptor in HL-60 cells

IJzerman AP, Jacobson KA, Müller CE, Cronstein BN, Cunha RA (2022) International Union of Basic and Clinical Pharmacology. CXII: Adenosine receptors: a further update. Pharmacol Rev 74(2):340–372. https://doi.org/10.1124/pharmrev.121.000445

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets–what are the challenges? Nat Rev Drug Discov 12(4):265–286. https://doi.org/10.1038/nrd3955

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5(3):247–264. https://doi.org/10.1038/nrd1983

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linden J (2005) Adenosine in tissue protection and tissue regeneration. Mol Pharmacol 67(5):1385–1387. https://doi.org/10.1124/mol.105.011783

Article  CAS  PubMed  Google Scholar 

Jacobson KA, Tosh DK, Jain S, Gao ZG (2019) Historical and current adenosine receptor agonists in preclinical and clinical development. Front Cell Neurosci 13:124. https://doi.org/10.3389/fncel.2019.00124

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S, Aghazadeh Tabrizi M, Romagnoli R, Baraldi PG, Ciancetta A, Tosh DK, Gao ZG, Gessi S (2018) A3 adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy. Med Res Rev 38(4):1031–1072. https://doi.org/10.1002/med.21456

Article  CAS  PubMed  Google Scholar 

Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, Gessi (2015) The A3 adenosine receptor: history and perspectives. Pharmacol Rev 67(1):74–102

Article  PubMed  Google Scholar 

Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117(1):123–140. https://doi.org/10.1016/j.pharmthera.2007.09.002

Article  CAS  PubMed  Google Scholar 

Wagner R, Ngamsri KC, Stark S, Vollmer I, Reutershan J (2010) Adenosine receptor A3 is a critical mediator in LPS-induced pulmonary inflammation. Am J Physiol Lung Cell Mol Physiol 299(4):L502–512. https://doi.org/10.1152/ajplung.00083.2010

Article  CAS  PubMed  Google Scholar 

Ren TH, Lv MM, An XM, Leung WK, Seto WK (2020) Activation of adenosine A3 receptor inhibits inflammatory cytokine production in colonic mucosa of patients with ulcerative colitis by downregulating the nuclear factor-kappa B signaling. J Dig Dis 21(1):38–45. https://doi.org/10.1111/1751-2980.12831

Article  CAS  PubMed  Google Scholar 

Haskó G, Szabó C, Németh ZH, Kvetan V, Pastores SM, Vizi ES (1996) Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol 157(10):4634–4640

Article  PubMed  Google Scholar 

Sajjadi FG, Takabayashi K, Foster AC, Domingo RC, Firestein GS (1996) Inhibition of TNF-alpha expression by adenosine: role of A3 adenosine receptors. J Immunol 156(9):3435–34342

Article  CAS  PubMed  Google Scholar 

Cohen S, Barer F, Bar-Yehuda S, IJzerman AP, Jacobson KA, Fishman P (2014) A3 adenosine receptor allosteric modulator induces an anti-inflammatory effect: in vivo studies and molecular mechanism of action. Mediators Inflamm 2014:708746. https://doi.org/10.1155/2014/708746

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao ZG, Auchampach JA, Jacobson KA (2023) Species dependence of A3 adenosine receptor pharmacology and function. Purinergic Signal 19(3):523–550. https://doi.org/10.1007/s11302-022-09910-1

Article  CAS  PubMed  Google Scholar 

Lillo A, Serrano-Marín J, Lillo J, Raïch I, Navarro G, Franco R (2023) Gene regulation in activated microglia by adenosine A3 receptor agonists: a transcriptomics study. Purinergic Signal. Jan 27. https://doi.org/10.1007/s11302-022-09916-9

Németh ZH, Leibovich SJ, Deitch EA, Vizi ES, Szabó C, Hasko G (2003) cDNA microarray analysis reveals a nuclear factor-kappab-independent regulation of macrophage function by adenosine. J Pharmacol Exp Ther 306(3):1042–1049. https://doi.org/10.1124/jpet.103.052944

Article  CAS  PubMed  Google Scholar 

Lillo A, Serrano-Marín J, Lillo J, Raïch I, Navarro G, Franco R (2023) Differential gene expression in activated microglia treated with adenosine A2A receptor antagonists highlights olfactory receptor 56 and T-cell activation GTPase-activating protein 1 as potential biomarkers of the polarization of activated microglia. Cells 12:2213. https://doi.org/10.3390/cells12182213

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175. https://doi.org/10.1038/nri3399

Article  CAS  PubMed  Google Scholar 

Van Haastert PJ, Devreotes PN (2004) Chemotaxis: signalling the way forward. Nat Rev Mol Cell Biol 5:626–634. https://doi.org/10.1038/nrm1435

Article  PubMed  Google Scholar 

Hauert AB, Martinelli S, Marone C, Niggli V, Differentiated (2002) HL-60 cells are a valid model system for the analysis of human neutrophil migration and chemotaxis. Int J Biochem Cell Biol 34:838–854. https://doi.org/10.1016/s1357-2725(02)00010-9

Article  CAS  PubMed  Google Scholar 

Woo CH, Yoo MH, You HJ, Cho SH, Mun YC, Seong CM, Kim JH (2003) Transepithelial migration of neutrophils in response to leukotriene B4 is mediated by a reactive oxygen species-extracellular signal-regulated kinase-linked cascade. J Immunol 170:6273–6279. https://doi.org/10.4049/jimmunol.170.12.6273

Article  CAS  PubMed  Google Scholar 

Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314(5806):1792–1795. https://doi.org/10.1126/science.1132559

Article  ADS  CAS  PubMed  Google Scholar 

Carrigan SO, Pink DB, Stadnyk AW (2007) Neutrophil transepithelial migration in response to the chemoattractant fMLP but not C5a is phospholipase D-dependent and related to the use of CD11b/CD18. J Leukoc Biol 82:1575–1584. https://doi.org/10.1189/jlb.0806528

Article  CAS  PubMed  Google Scholar 

Kohno Y, Sei Y, Koshiba M, Kim HO, Jacobson KA (1996) Induction of apoptosis in HL-60 human promyelocytic leukemia cells by selective adenosine A3 receptor agonists. Biochem Biophys Res Comm. ;219:904–910. Correction: 1996;221:849

Gessi S, Varani K, Merighi S, Cattabriga E, Iannotta V, Leung E, Baraldi PG, Borea PA (2002) A3 adenosine receptors in human neutrophils and promyelocytic HL60 cells: a pharmacological and biochemical study. Mol Pharmacol 61(2):415–424. https://doi.org/10.1124/mol.61.2.415

Article  CAS  PubMed  Google Scholar 

Koscsó B, Csóka B, Pacher P, Haskó G (2011) Investigational A3 adenosine receptor targeting agents. Expert Opin Investig Drugs 20(6):757–768. https://doi.org/10.1517/13543784.2011.573785

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tosh DK, Padia J, Salvemini D, Jacobson KA (2015) Efficient, large-scale synthesis and preclinical studies of MRS5698, a highly selective A3 adenosine receptor agonist that protects against chronic neuropathic pain. Purinergic Signal 11:371–387

Article  CAS  PubMed  PubMed Central  Google Scholar 

Göblyös A, Gao ZG, Brussee J, Connestari R, Neves Santiago S, Ye K, IJzerman AP, Jacobson KA (2006) Structure activity relationships of 1H-imidazo[4,5-c]quinolin-4-amine derivatives new as allosteric enhancers of the A3 adenosine receptor. J Med Chem 49:3354–3361

Article  PubMed  PubMed Central  Google Scholar 

Gao ZG, Levitan IM, Inoue A, Wei Q, Jacobson KA (2023) A2B adenosine receptor activation and modulation by protein kinase C. iScience 26(7):107178. https://doi.org/10.1016/j.isci.2023.107178

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Gao ZG, Verzijl D, Zweemer A, Ye K, Göblyös A, Ijzerman AP, Jacobson KA (2011) Functionally biased modulation of A3 adenosine receptor agonist efficacy and potency by imidazoquinolinamine allosteric enhancers. Biochem Pharmacol 82(6):658–668. https://doi.org/10.1016/j.bcp.2011.06.017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Totzke G, Essmann F, Pohlmann S, Lindenblatt C, Jänicke RU, Schulze-Osthoff K (2006) A novel member of the IkappaB family, human IkappaB-zeta, inhibits transactivation of p65 and its DNA binding. J Biol Chem 281(18):12645–12654. https://doi.org/10.1074/jbc.M511956200

Article  CAS  PubMed  Google Scholar 

Cartwright T, Perkins ND, Wilson L (2016) NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J 283(10):1812–1822. https://doi.org/10.1111/febs.13627

Article  CAS  PubMed  Google Scholar 

Giordano M, Roncagalli R, Bourdely P, Chasson L, Buferne M, Yamasaki S, Beyaert R, van Loo G, Auphan-Anezin N, Schmitt-Verhulst AM, Verdeil G (2014) The tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) imposes a brake on antitumor activity of CD8 T cells. Proc Natl Acad Sci USA 111(30):11115–11120. https://doi.org/10.1073/pnas.1406259111

Article  ADS 

留言 (0)

沒有登入
gif