The cytoskeleton adaptor protein Sorbs1 controls the development of lymphatic and venous vessels in zebrafish

Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–87. https://doi.org/10.1016/j.cell.2011.08.039.

Article  CAS  PubMed  Google Scholar 

Vieira JM, Norman S, Del Campo CV, Cahill TJ, Barnette DN, Gunadasa-Rohling M, et al. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J Clin Investig. 2018;128:3402–12. https://doi.org/10.1172/JCI97192.

Article  PubMed  PubMed Central  Google Scholar 

Klotz L, Norman S, Vieira JM, Masters M, Rohling M, Dubé KN, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62–7. https://doi.org/10.1038/nature14483.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Vuorio T, Tirronen A, Ylä-Herttuala S. Cardiac lymphatics – a new avenue for therapeutics? Trends Endocrinol Metab. 2017;28:285–96. https://doi.org/10.1016/j.tem.2016.12.002.

Article  CAS  PubMed  Google Scholar 

Song E, Mao T, Dong H, Boisserand LSB, Antila S, Bosenberg M, et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature. 2020;577:689–94. https://doi.org/10.1038/s41586-019-1912-x.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Tanabe K, Wada J, Sato Y. Targeting angiogenesis and lymphangiogenesis in kidney disease. Nat Rev Nephrol. 2020;16:289–303. https://doi.org/10.1038/s41581-020-0260-2.

Article  CAS  PubMed  Google Scholar 

Shin M, Beane TJ, Quillien A, Male I, Zhu LJ, Lawson ND. Vegfa signals through ERK to promote angiogenesis, but not artery differentiation. Development. 2016;143:3796–805. https://doi.org/10.1242/dev.137919.

Article  CAS  PubMed  PubMed Central  Google Scholar 

François M, Caprini A, Hosking B, Orsenigo F, Wilhelm D, Browne C, et al. Sox18 induces development of the lymphatic vasculature in mice. Nature. 2008;456:643–7. https://doi.org/10.1038/nature07391.

Article  ADS  CAS  PubMed  Google Scholar 

Gauvrit S, Villasenor A, Strilic B, Kitchen P, Collins MM, Marín-Juez R, et al. HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development. Nat Commun. 2018;9. https://doi.org/10.1038/s41467-018-05039-1.

Kazenwadel J, Betterman KL, Chong CE, Stokes PH, Lee YK, Secker GA, et al. GATA2 is required for lymphatic vessel valve development and maintenance. J Clin Investig. 2015;125:2879–994. https://doi.org/10.1172/JCI78888.

Article  Google Scholar 

Srinivasan RS, Escobedo N, Yang Y, Interiano A, Dillard ME, Finkelstein D, et al. The Prox1–Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 2014;28:2175–87. https://doi.org/10.1101/gad.216226.113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srinivasan RS, Geng X, Yang Y, Wang Y, Mukatira S, Studer M, et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 2010;24:696–707. https://doi.org/10.1101/gad.1859310.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baek S, Oh TG, Secker G, Sutton DL, Okuda KS, Paterson S, et al. The alternative splicing regulator Nova2 constrains vascular Erk signaling to limit specification of the lymphatic lineage. Dev Cell. 2019;49:279-292.e5. https://doi.org/10.1016/j.devcel.2019.03.017.

Article  CAS  PubMed  Google Scholar 

Williams SP, Odell AF, Karnezis T, Farnsworth RH, Gould CM, Li J, et al. Genome-wide functional analysis reveals central signaling regulators of lymphatic endothelial cell migration and remodeling. Sci Signal. 2017;10::eaal2987.

Article  PubMed  Google Scholar 

Nicenboim J, Malkinson G, Lupo T, Asaf L, Sela Y, Mayseless O, et al. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature. 2015;522:56–61. https://doi.org/10.1038/nature14425.

Article  ADS  CAS  PubMed  Google Scholar 

Koltowska K, Lagendijk AK, Pichol-Thievend C, Fischer JC, Francois M, Ober EA, et al. Vegfc regulates bipotential precursor division and Prox1 expression to promote lymphatic identity in zebrafish. Cell Rep. 2015;13:1828–41. https://doi.org/10.1016/j.celrep.2015.10.055.

Article  CAS  PubMed  Google Scholar 

Peng D, Ando K, Hußmann M, Gloger M, Skoczylas R, Mochizuki N, et al. Proper migration of lymphatic endothelial cells requires survival and guidance cues from arterial mural cells. Elife 2022;11. https://doi.org/10.7554/eLife.74094.

Bussmann J, Bos FL, Urasaki A, Kawakami K, Duckers HJ, Schulte-Merker S. Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk. Development. 2010;137:2653–7. https://doi.org/10.1242/dev.048207.

Article  CAS  PubMed  Google Scholar 

Hogan BM, Schulte-Merker S. How to plumb a pisces: understanding vascular development and disease using zebrafish embryos. Dev Cell. 2017;42:567–83.

Article  CAS  PubMed  Google Scholar 

Xu C, Hasan SS, Schmidt I, Rocha SF, Pitulescu ME, Bussmann J, et al. Arteries are formed by vein-derived endothelial tip cells. Nat Commun. 2014;5:5758. https://doi.org/10.1038/ncomms6758.

Article  ADS  CAS  PubMed  Google Scholar 

Geudens I, Coxam B, Alt S, Gebala V, Vion AC, Meier K, et al. Artery-vein specification in the zebrafish trunk is pre-patterned by heterogeneous Notch activity and balanced by flow-mediated fine-tuning. Development 2019;146. https://doi.org/10.1242/dev.181024.

Wiley DM, Kim JD, Hao J, Hong CC, Bautch VL, Jin SW. Distinct signaling pathways regulate sprouting angiogenesis from the dorsal aorta and axial vein. Nat Cell Biol. 2011;13:686–92. https://doi.org/10.1038/ncb2232.Distinct.

Article  PubMed  PubMed Central  Google Scholar 

Seth A, Goi M, Childs SJ. Patterning mechanisms of the sub-intestinal venous plexus in zebrafish. Dev Biol. 2016;409:114–28. https://doi.org/10.1016/j.ydbio.2015.10.017.

Article  CAS  Google Scholar 

Hen G, Nicenboim J, Mayseless O, Asaf L, Shin M, Busolin G, et al. Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development. Development. 2015;142:4266–78. https://doi.org/10.1242/dev.129247.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isogai S, Horiguchi M, Weinstein BM. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol. 2001;230:278–301. https://doi.org/10.1006/dbio.2000.9995.

Article  CAS  PubMed  Google Scholar 

Küchler AM, Gjini E, Peterson-Maduro J, Cancilla B, Wolburg H, Schulte-Merker S. Development of the zebrafish lymphatic system requires Vegfc signaling. Curr Biol. 2006;16:1244–8. https://doi.org/10.1016/j.cub.2006.05.026.

Article  CAS  PubMed  Google Scholar 

Sun XD, Liu XE, Wu JM, Cai XJ, Mou YP, Li JD. Expression and significance of angiopoietin-2 in gastric cancer. World J Gastroenterol. 2004;10:1382–5. https://doi.org/10.3748/wjg.v10.i9.1382.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R, Caucig C, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol. 2002;161:947–56. https://doi.org/10.1016/S0002-9440(10)64255-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hogan BM, Herpers R, Witte M, Heloterä H, Alitalo K, Duckers HJ, et al. Vegfc/Flt4 signalling is suppressed by Dll4 in developing zebrafish intersegmental arteries. Development. 2009;136:4001–9. https://doi.org/10.1242/dev.039990.

Article  CAS  PubMed  Google Scholar 

Alders M, Hogan BM, Gjini E, Salehi F, Al-Gazali L, Hennekam EA, et al. Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet. 2009;41:1272–4. https://doi.org/10.1038/ng.484.

Article  CAS  PubMed  Google Scholar 

Hogan BM, Bos FL, Bussmann J, Witte M, Chi NC, Duckers HJ, et al. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat Genet. 2009;41:396–8. https://doi.org/10.1038/ng.321.

Article  CAS  PubMed  Google Scholar 

Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppänen VM, Holopainen T, et al. CCBE1 enhances lymphangiogenesis via a disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation. 2014;129:1962–71. https://doi.org/10.1161/CIRCULATIONAHA.113.002779.

Article  CAS  PubMed  Google Scholar 

Le Guen L, Karpanen T, Schulte D, Harris NC, Koltowska K, Roukens G, et al. Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development. 2014;141:1239–49. https://doi.org/10.1242/dev.100495.

Article  CAS  PubMed  Google Scholar 

Koltowska K, Paterson S, Bower NI, Baillie GJ, Lagendijk AK, Astin JW, et al. mafba is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish. Genes Dev. 2015;29:1618–30.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif