Genomics insights into flowering and floral pattern formation: regional duplication and seasonal pattern of gene expression in Camellia

Sealy JR. A revision of the genus Camellia. London: Royal Horticultural Society; 1958.

Google Scholar 

Gao J-Y. Collected species of the genus Camellia- an illustrated outline. Hangzhou: Zhejiang Science and Technology Press; 2005.

Google Scholar 

Ueno S, Tomaru N, Yoshimaru H, Manabe T, Yamamoto S. Size-class differences in genetic structure and individual distribution of Camellia japonica L. in a Japanese old-growth evergreen forest. Heredity (Edinb). 2002;89(2):120–6.

Article  CAS  PubMed  Google Scholar 

Lin L, Hu Z-Y, Ni S, Li J-Y, Qiu Y-X. Genetic diversity of Camellia japonica (Theaceae), a species endangered to East Asia, detected by inter-simple sequence repeat (ISSR). Biochem Syst Ecol. 2013;50:199–206.

Article  CAS  Google Scholar 

Lin L, Hu Z, Li J, Zhu Z, Ni S. Analysis on genetic diversity of ten insular populations of Camellia japonica. Acta Horticulturae Sinica. 2012;39(8):1531–8.

CAS  Google Scholar 

Li X, Li J, Fan Z, Liu Z, Tanaka T, Yin H. Global gene expression defines faded whorl specification of double flower domestication in Camellia. Sci Rep. 2017;7(1):3197.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Sun Y, Fan Z, Li X, Liu Z, Li J, Yin H. Distinct double flower varieties in Camellia japonica exhibit both expansion and contraction of C-class gene expression. BMC Plant Biol. 2014;14:1–11.

Article  Google Scholar 

Tanikawa N, Kashiwabara T, Hokura A, Abe T, Shibata M, Nakayama M. A peculiar yellow flower coloration of camellia using aluminum-flavonoid interaction. J Japanese Soc Horticult Sci. 2008;77(4):402–7.

Article  CAS  Google Scholar 

Li X, Wang J, Yin H, Fan Z, Li J. Variation of flower colors and their relationships with anthocyanins in cultivars of Camellia japonica. J Ecol Rural Environ. 2019;35(10):1307–13.

CAS  Google Scholar 

Fan M, Zhang Y, Yang M, Wu S, Yin H, Li J, Li X. Transcriptomic and chemical analyses reveal the hub regulators of flower color variation from Camellia japonica bud sport. Horticulturae. 2022;8(2):129.

Article  Google Scholar 

Liu X, Zhong N, Feng G, Yan D, Gao J. A new advance on Camellia breeding in China: studies on thirty summer-blooming hybrids from crosses between Camellia azalea and other camellias. J Agric Sci Technol B. 2013;3(4B):254.

Google Scholar 

Wang Y, Zhuang H, Shen Y, Wang Y, Wang Z. The dataset of Camellia cultivars names in the world. Biodivers Data J. 2021;9(12):1–14.

Google Scholar 

Hembree WG, Ranney TG, Jackson BE, Weathington M. Cytogenetics, ploidy, and genome sizes of Camellia and related genera. HortScience horts. 2019;54(7):1124–42.

Article  CAS  Google Scholar 

Lin P, Wang K, Wang Y, Hu Z, Yan C, Huang H, Ma X, Cao Y, Long W, Liu W, et al. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication. Genome Biol. 2022;23(1):14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci. 2018;115(18):E4151–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang FS, Nie S, Liu H, Shi TL, Tian XC, Zhou SS, Bao YT, Jia KH, Guo JF, Zhao W, et al. Chromosome-level genome assembly of a parent species of widely cultivated azaleas. Nat Commun. 2020;11(1):5269.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Causier B, Castillo R, Xue Y, Schwarz-Sommer Z, Davis B. Tracing the evolution of the floral homeotic B- and C-function genes through genome synteny. Mol Biol Evol. 2010;27(11):2651.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

Article  PubMed  PubMed Central  Google Scholar 

Hsu CY, Liu Y, Luthe DS, Yuceer C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell. 2006;18(8):1846–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu CY, Adams JP, Kim H, No K, Ma C, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, et al. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci. 2011;108(26):10756–61.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Shi T, Huang H, Barker MS. Ancient genome duplications during the evolution of kiwifruit (Actinidia) and related Ericales. Ann Bot. 2010;3:497–504.

Article  Google Scholar 

Wang Y, Chen F, Ma Y, Zhang T, Fang W. An ancient whole-genome duplication event and its contribution to flavor compounds in the tea plant (Camellia sinensis). Horticult Res. 2021;8(1):12.

Article  Google Scholar 

Porturas LD, Anneberg TJ, Curé AE, Wang S, Althoff DM, Segraves KA. A meta-analysis of whole genome duplication and the effects on flowering traits in plants. Am J Bot. 2019;106(3):469–76.

Article  PubMed  Google Scholar 

Blackman BK, Strasburg JL, Raduski AR, Michaels SD, Rieseberg LH. The role of recently derived FT paralogs in sunflower domestication. Curr Biol. 2010;20(7):629–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blackman BK. Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication. J Exp Bot. 2013;64(2):421–31.

Article  CAS  PubMed  Google Scholar 

Wessinger CA, Hileman LC. Parallelism in flower evolution and development. Annu Rev Ecol Evol Syst. 2020;51(1):387–408.

Article  Google Scholar 

Fan Z, Li J, Li X, Wu B, Wang J, Liu Z, Yin H. Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering. Sci Rep. 2015;5(1):9729.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Ding J, Böhlenius H, Rühl M, Peng C, Nilsson O. GIGANTEA-like genes control seasonal growth cessation in populus. New Phytol. 2018;218(4):1491–503.

Article  CAS  PubMed  Google Scholar 

Soufflet-Freslon V, Araou E, Jeauffre J, Thouroude T, Chastellier A, Michel G, et al. Diversity and selection of the continuous-flowering gene, RoKSN, in rose. Horticult Res. 2021;8:1–11.

Article  Google Scholar 

Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K, Oyant LHS, Araki T, Denoyes B, Foucher F. The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J. 2012;69(1):116–25.

Article  CAS  PubMed  Google Scholar 

Srinivasan C, Dardick C, Callahan A, Scorza R. Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS ONE. 2012;7(7):e40715.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Shen TF, Huang B, Xu M, Zhou PY, Ni ZX, Gong C, et al. The reference genome of camellia chekiangoleosa provides insights into camellia evolution and tea oil biosynthesis. Horticult Res. 2022;9:1–11.

Article  Google Scholar 

Gong W, Xiao S, Wang L, Liao Z, Chang Y, Mo W, Hu G, Li W, Zhao G, Zhu H, et al. Chromosome-level genome of Camellia lanceoleosa provides a valuable resource for understanding genome evolution and self-incompatibility. Plant J. 2022;110(3):881–98.

Article  CAS  PubMed  Google Scholar 

Porebski S, Bailey LG, Baum BR. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report. 1997;15(1):8–15.

Article  CAS  Google Scholar 

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27(6):764–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn C, O’Malley R, Figueroa-Balderas R, Morales-Cruz A, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 2016;13(12):1050–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Res. 2016;44(19):e147.

留言 (0)

沒有登入
gif