Nilotinib in combination with sunitinib renders MCL-1 for degradation and activates autophagy that overcomes sunitinib resistance in renal cell carcinoma

B. Shuch, A. Amin, A.J. Armstrong, J.N. Eble, V. Ficarra, A. Lopez-Beltran et al., Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Europ. Urol. 67, 85–97 (2015). https://doi.org/10.1016/j.eururo.2014.04.029

Article  Google Scholar 

J.S. Lam, J.T. Leppert, A.S. Belldegrun, R.A. Figlin, Novel approaches in the therapy of metastatic renal cell carcinoma. World J. Urol. 23, 202–212 (2005). https://doi.org/10.1007/s00345-004-0466-0

Article  CAS  PubMed  Google Scholar 

N.K. Janzen, H.L. Kim, R.A. Figlin, A.S. Belldegrun, Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urologic Clini. North Am. 30, 843–852 (2003). https://doi.org/10.1016/s0094-0143(03)00056-9

Article  Google Scholar 

A.M. Molina, X. Lin, B. Korytowsky, E. Matczak, M.J. Lechuga, R. Wiltshire et al., Sunitinib objective response in metastatic renal cell carcinoma: analysis of 1059 patients treated on clinical trials. Eur. J. Cancer 50, 351–358 (2014). https://doi.org/10.1016/j.ejca.2013.08.021

Article  CAS  PubMed  Google Scholar 

S. Bracarda, R. Iacovelli, L. Boni, M. Rizzo, L. Derosa, M. Rossi et al., Sunitinib administered on 2/1 schedule in patients with metastatic renal cell carcinoma: the RAINBOW analysis. Ann. Oncol. 26, 2107–2113 (2015). https://doi.org/10.1093/annonc/mdv315

Article  CAS  PubMed  Google Scholar 

M.E. Gore, C. Szczylik, C. Porta, S. Bracarda, G.A. Bjarnason, S. Oudard et al., Safety and efficacy of sunitinib for metastatic renal-cell carcinoma: an expanded-access trial. Lancet Oncol. 10, 757–763 (2009). https://doi.org/10.1016/s1470-2045(09)70162-7

Article  CAS  PubMed  Google Scholar 

B.E. Houk, C.L. Bello, B. Poland, L.S. Rosen, G.D. Demetri, R.J. Motzer, Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother. Pharmacol. 66, 357–371 (2010). https://doi.org/10.1007/s00280-009-1170-y

Article  CAS  PubMed  Google Scholar 

D.R. Feldman, M.S. Baum, M.S. Ginsberg, H. Hassoun, C.D. Flombaum, S. Velasco et al., Phase I trial of bevacizumab plus escalated doses of sunitinib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 1432–1439 (2009). https://doi.org/10.1200/jco.2008.19.0108

Article  CAS  PubMed  PubMed Central  Google Scholar 

P.H. Patel, P.L. Senico, R.E. Curiel, R.J. Motzer, Phase I study combining treatment with temsirolimus and sunitinib malate in patients with advanced renal cell carcinoma. Clin. Genitourinary Cancer 7, 24–27 (2009). https://doi.org/10.3816/CGC.2009.n.004

Article  CAS  Google Scholar 

A. Amin, E.R. Plimack, M.S. Ernstoff, L.D. Lewis, T.M. Bauer, D.F. McDermott et al., Safety and efficacy of nivolumab in combination with sunitinib or pazopanib in advanced or metastatic renal cell carcinoma: the CheckMate 016 study. J. Immunother. Cancer 6 (2018). https://doi.org/10.1186/s40425-018-0420-0

M. Elgendy, A.K. Abdel-Aziz, S.L. Renne, V. Bornaghi, G. Procopio, M. Colecchia et al., Dual modulation of MCL-1 and mTOR determines the response to sunitinib. J. Clin. Investig. 127, 153–168 (2017). https://doi.org/10.1172/jci84386

Article  PubMed  Google Scholar 

S. Giuliano, Y. Cormerais, M. Dufies, R. Grepin, P. Colosetti, A. Belaid et al., Resistance to sunitinib in renal clear cell carcinoma results from sequestration in lysosomes and inhibition of the autophagic flux. Autophagy 11, 1891–1904 (2015). https://doi.org/10.1080/15548627.2015.1085742

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. DeVorkin, M. Hattersley, P. Kim, J. Ries, J. Spowart, M.S. Anglesio et al., Autophagy inhibition enhances sunitinib efficacy in clear cell ovarian carcinoma. Mol. Cancer Res. 15, 250–258 (2017). https://doi.org/10.1158/1541-7786.Mcr-16-0132

Article  CAS  PubMed  PubMed Central  Google Scholar 

T. Ikeda, K. Ishii, Y. Saito, M. Miura, A. Otagiri, Y. Kawakami et al., Inhibition of autophagy enhances sunitinib-induced cytotoxicity in rat pheochromocytoma PC12 cells. J. Pharmacol. Sci. 121, 67–73 (2013). https://doi.org/10.1254/jphs.12158FP

Article  CAS  PubMed  Google Scholar 

T. Wiedmer, A. Blank, S. Pantasis, L. Normand, R. Bill, P. Krebs et al., Autophagy inhibition improves sunitinib efficacy in pancreatic neuroendocrine tumors via a lysosome-dependent mechanism. Mol. Cancer Ther. 16, 2502–2515 (2017). https://doi.org/10.1158/1535-7163.Mct-17-0136

Article  CAS  PubMed  Google Scholar 

K.J. Gotink, H.J. Broxterman, M. Labots, R.R. de Haas, H. Dekker, R.J. Honeywell et al., Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin. Cancer Res. 17, 7337–7346 (2011). https://doi.org/10.1158/1078-0432.ccr-11-1667

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Elgendy, C. Sheridan, G. Brumatti, S.J. Martin, Oncogenic ras-induced expression of noxa and beclin-1 promotes autophagic cell death and limits clonogenic survival. Molecular Cell 42, 23–35 (2011). https://doi.org/10.1016/j.molcel.2011.02.009

Article  CAS  PubMed  Google Scholar 

M.C. Maiuri, G. Le Toumelin, A. Criollo, J.C. Rain, F. Gautier, P. Juin et al., Functional and physical interaction between Bcl-X-L and a BH3-like domain in Beclin-1. EMBO J. 26, 2527–2539 (2007). https://doi.org/10.1038/sj.emboj.7601689

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Elgendy, M. Ciro, A.K. Abdel-Aziz, G. Belmonte, R. Dal Zuffo, C. Mercurio et al., Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner. Nat. Commun. 5 (2014). https://doi.org/10.1038/ncomms6637

J.R. Wisniewski, A. Zougman, N. Nagaraj, M. Mann, Universal sample preparation method for proteome analysis. Nature Methods 6, 359–U360 (2009). https://doi.org/10.1038/nmeth.1322

Article  CAS  PubMed  Google Scholar 

M. Zarei, A. Sprenger, M. Rackiewicz, J. Dengjel, Fast and easy phosphopeptide fractionation by combinatorial ERLIC-SCX solid-phase extraction for in-depth phosphoproteome analysis. Nature Protocols 11, 37–45 (2016). https://doi.org/10.1038/nprot.2015.134

Article  CAS  PubMed  Google Scholar 

T.C. Chou, P. Talalay, Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22, 27–55 (1984). https://doi.org/10.1016/0065-2571(84)90007-4

Article  CAS  PubMed  Google Scholar 

Z.J. Jin, About the evaluation of drug combination. Acta Pharmacol. Sin. 25, 146–147 (2004)

CAS  PubMed  Google Scholar 

D. Huang, Y. Ding, Y. Li, W.M. Luo, Z.F. Zhang, J. Snider et al., Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma. Cancer Res. 70, 1053–1062 (2010). https://doi.org/10.1158/0008-5472.Can-09-3722

Article  CAS  PubMed  Google Scholar 

Q. Ding, X. He, J.M. Hsu, W. Xia, C.T. Chen, L.Y. Li et al., Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol. Cell Biol. 27, 4006–4017 (2007). https://doi.org/10.1128/mcb.00620-06

Article  CAS  PubMed  Google Scholar 

A.M. Domina, J.A. Vrana, M.A. Gregory, S.R. Hann, R.W. Craig, MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene 23, 5301–5315 (2004). https://doi.org/10.1038/sj.onc.1207692

Article  CAS  PubMed  Google Scholar 

W.T. Tai, C.W. Shiau, H.L. Chen, C.Y. Liu, C.S. Lin, A.L. Cheng et al., Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death induced by sorafenib and SC-59 in hepatocellular carcinoma cells. Cell Death Dis. 4, e485 (2013). https://doi.org/10.1038/cddis.2013.18

Article  CAS  PubMed  PubMed Central  Google Scholar 

G. Marino, M. Niso-Santano, E.H. Baehrecke, G. Kroemer, Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014). https://doi.org/10.1038/nrm3735

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Giuliano, Y. Cormerais, M. Dufies, R. Grépin, P. Colosetti, A. Belaid et al., Resistance to sunitinib in renal clear cell carcinoma results from sequestration in lysosomes and inhibition of the autophagic flux. Autophagy 11, 1891–1904 (2015). https://doi.org/10.1080/15548627.2015.1085742

Article  CAS  PubMed  PubMed Central  Google Scholar 

D.J. Klionsky, A.K. Abdel-Aziz, S. Abdelfatah, M. Abdellatif, A. Abdoli, S. Abel et al., Guidelines for the use and interpretation of assays for monitoring autophagy (4th edn). Autophagy 17, 1–382 (2021). https://doi.org/10.1080/15548627.2020.1797280

Article  PubMed  PubMed Central  Google Scholar 

R.J. Motzer, E. Jonasch, N. Agarwal, A. Alva, M. Baine, K. Beckermann et al., Kidney cancer, version 3.2022. J. Natl. Compr. Cancer Network 20, 71–89 (2022). https://doi.org/10.6004/jnccn.2022.0001

Article  CAS  Google Scholar 

L. Qu, J. Ding, C. Chen, Z.J. Wu, B. Liu, Y. Gao et al., Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 29, 653–668 (2016). https://doi.org/10.1016/j.ccell.2016.03.004

Article  CAS  PubMed  Google Scholar 

F. Shojaei, J.H. Lee, B.H. Simmons, A. Wong, C.O. Esparza, P.A. Plumlee et al., HGF/c-met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res. 70, 10090–10100 (2010). https://doi.org/10.1158/0008-5472.Can-10-0489

Article  CAS  PubMed 

留言 (0)

沒有登入
gif