Preparation of bilayer tissue-engineered polyurethane/poly-L-lactic acid nerve conduits and their in vitro characterization for use in peripheral nerve regeneration

Arslantunali D, Dursun T, Yucel D, Hasirci N, Hasirci V. Peripheral nerve conduits: technology update. Medical Devices. Evidence and Research; 2014. p. 405–24.

Google Scholar 

Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol. 2007;82(4):163–201.

Article  CAS  PubMed  Google Scholar 

Reyes O, Kuffler DP. Promoting neurological recovery following a traumatic peripheral nerve injury. P R Health Sci J. 2005;24(3):215–24.

PubMed  Google Scholar 

Jackson PC, Diamond J. Temporal and spatial constraints on the collateral sprouting of low-threshold mechanosensory nerves in the skin of rats. J Comp Neurol. 1984;226(3):336–45.

Article  CAS  PubMed  Google Scholar 

Zennifer A, Thangadurai M, Sundaramurthi D, Sethuraman S. Additive manufacturing of peripheral nerve conduits–fabrication methods, design considerations and clinical challenges. SLAS technology. 2023;28(3):102–26.

Article  CAS  PubMed  Google Scholar 

Kaplan HM, Mishra P, Kohn J. The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans. J Mater Sci Mater Med. 2015;26:1–5.

Article  CAS  Google Scholar 

Moattari M, Moattari F, Kaka G, Kouchesfahani HM, Sadraie SH, Naghdi M. Comparison of neuroregeneration in central nervous system and peripheral nervous system. Otorhinolaryngol Neck Surg. 2018;3:1–3.

Google Scholar 

De Albornoz PM, Delgado PJ, Forriol F, Maffulli N. Non-surgical therapies for peripheral nerve injury. Br Med Bull. 2011;100(100):73–100.

Article  Google Scholar 

Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: a review on design, materials and fabrication methods. Acta Biomater. 2020;106:54–69.

Article  CAS  PubMed  Google Scholar 

Yang F, Murugan R, Ramakrishna S, Wang X, Ma Y-X, Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 2004;25(10):1891–900.

Article  CAS  PubMed  Google Scholar 

McCreedy DA, Sakiyama-Elbert SE. Combination therapies in the CNS: engineering the environment. Neurosci Lett. 2012;519(2):115–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saremi J, Khanmohammadi M, Azami M, Ai J, Yousefi-Ahmadipour A, Ebrahimi-Barough S. Tissue-engineered nerve graft using silk-fibroin/polycaprolactone fibrous mats decorated with bioactive cerium oxide nanoparticles. J Biomed Mater Res A. 2021;109(9):1588–99.

Article  CAS  PubMed  Google Scholar 

Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, Nourani M, Khojasteh A, Hamidieh AA, et al. Sciatic nerve regeneration by transplantation of Schwann cells via erythropoietin controlled-releasing polylactic acid/multiwalled carbon nanotubes/gelatin nanofibrils neural guidance conduit. J Biomed Mater Res B Appl Biomater. 2018;106(4):1463–76.

Article  CAS  PubMed  Google Scholar 

Schlosshauer B, Dreesmann L, Schaller HE, Sinis N. Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery. 2006;59(4):740–8.

Article  PubMed  Google Scholar 

Lundborg G, Dahlin LB, Danielsen N. Ulnar nerve repair by the silicone chamber technique. Scand J Plast Reconstr Surg Hand Surg. 1991;25(1):79–82.

Article  CAS  PubMed  Google Scholar 

Battiston B, Geuna S, Ferrero M, Tos P. Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery. 2005;25(4):258–67.

Article  PubMed  Google Scholar 

Dreesmann L, Schlosshauer B. Implantation of synthetic nerve guides in humans. Biomaterialien. 2005;6:263–8.

Article  Google Scholar 

Meek MF, Coert JH. Clinical use of nerve conduits in peripheral-nerve repair: review of the literature. J Reconstr Microsurg. 2002;18(02):097–110.

Article  CAS  Google Scholar 

Cunha C, Panseri S, Antonini S. Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration. Nanomedicine. 2011;7(1):50–9.

Article  CAS  PubMed  Google Scholar 

Abpeikar Z, Moradi L, Javdani M, Kargozar S, Soleimannejad M, Hasanzadeh E, et al. Characterization of macroporous Polycaprolactone/silk fibroin/gelatin/ascorbic acid composite scaffolds and in vivo results in a rabbit model for Meniscus cartilage repair. Cartilage. 2021;13(2_suppl):1583s–601s.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goulart CO, Lopes FRP, Monte ZO, Dantas SV Jr, Souto A, Oliveira JT, et al. Evaluation of biodegradable polymer conduits–poly (L-lactic acid)–for guiding sciatic nerve regeneration in mice. Methods. 2016;99:28–36.

Article  CAS  PubMed  Google Scholar 

Santoro M, Shah SR, Walker JL, Mikos AG. Poly (lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev. 2016;107:206–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farzamfar S, Esmailpour F, Rahmati M, Vaez A, Mirzaii M, Garmabi B, et al. Poly-lactic acid/gelatin nanofiber (PLA/GTNF) conduits containing platelet-rich plasma for peripheral nerve regeneration. International journal of health. Studies. 2017;3(2)

Carlberg B, Axell MZ, Nannmark U, Liu J, Kuhn HG. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells. Biomed Mater. 2009;4(4):045004.

Article  ADS  PubMed  Google Scholar 

Tijing LD, Park C-H, Choi WL, Ruelo MTG, Amarjargal A, Pant HR, et al. Characterization and mechanical performance comparison of multiwalled carbon nanotube/polyurethane composites fabricated by electrospinning and solution casting. Compos Part B. 2013;44(1):613–9.

Article  CAS  Google Scholar 

Ning C, Zhou Z, Tan G, et al. Electroactive polymers for tissue regeneration: developments and perspectives. Prog Polym Sci. 2018;81:144–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solazzo M, O’Brien FJ, Nicolosi V, et al. The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioeng. 2019;3:041501.

Article  PubMed  PubMed Central  Google Scholar 

Wang, G.;Wu,W.; Yang, H.; Zhang, P.;Wang, J.Y. Intact polyaniline coating as a conductive guidance is beneficial to repairing sciatic nerve injury. J Biomed Mater Res Part B Appl Biomater 2020;108, 128–142.

Nair S. Natar ering, biomaterials, 29 (2008) 1989–2006.Ajan S, Kim SH. Fabrication of electrically conducting polypyrrole-poly (ethylene oxide) compositenanofibers. Macromol Rapid Commun. 2005;26(20):1599–603.

Article  CAS  Google Scholar 

Xiang C, Zhang Y, Guo W, Liang X-J. Biomimetic carbon nanotubes for neurological disease therapeutics as inherent medication. Acta Pharm Sin B. 2020;10(2):239–48.

Article  CAS  PubMed  Google Scholar 

Shokrgozar MA, Mottaghitalab F, Mottaghitalab V, Farokhi M. Fabrication of porous chitosan/poly (vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering. J Biomed Nanotechnol. 2011;7(2):276–84.

Article  CAS  PubMed  Google Scholar 

Kojour MA, Ebrahimi-Barough S, Kouchesfehani HM, Jalali H, Ebrahim MH. Oleic acid promotes the expression of neural markers in differentiated human endometrial stem cells. J Chem Neuroanat. 2017;79:51–7.

Article  CAS  PubMed  Google Scholar 

Mobarakeh ZT, Ai J, Yazdani F, Sorkhabadi SMR, Ghanbari Z, Javidan AN, et al. Human endometrial stem cells as a new source for programming to neural cells. Cell biology international reports. 2012;19(1):7–14.

Article  Google Scholar 

Hasanzadeh E, Mahmoodi N, Basiri A, Esmaeili Ranjbar F, Hassannejad Z, Ebrahimi-Barough S, et al. Proanthocyanidin as a crosslinking agent for fibrin, collagen hydrogels and their composites with decellularized Wharton’s-jelly-extract for tissue engineering applications. J Bioact Compat Polym. 2020;35(6):554–71.

Article  CAS  Google Scholar 

Mahmoodi N, Ai J, Hassannejad Z, Ebrahimi-Barough S, Hasanzadeh E, Nekounam H, et al. Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen hydrogel. Sci Rep. 2021;11(1):21722.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Hasanzadeh E, Ebrahimi-Barough S, Mahmoodi N, Mellati A, Nekounam H, Basiri A, et al. Defining the role of 17β-estradiol in human endometrial stem cells differentiation into neuron-like cells. Cell Biol Int. 2021;45(1):140–53.

Article  CAS  PubMed  Google Scholar 

Hasanzadeh E, Amoabediny G, Haghighipour N, Gholami N, Mohammadnejad J, Shojaei S, et al. The stability evaluation of mesenchymal stem cells differentiation toward endothelial cells by chemical and mechanical stimulation. In Vitro Cellular & Developmental Biology-Animal. 2017;53:818–26.

Article  CAS  Google Scholar 

Vallone VF, Romaniuk MA, Choi H, Labovsky V, Otaegui J, Chasseing NA. Mesenchymal stem cells and their use in therapy: what has been achieved?. Differentiation. 2013;85(1-2):1-0.

Zhu Y, Wang A, Patel S, Kurpinski K, Diao E, Bao X, et al. Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration. Tissue Engineering Part C: Methods. 2011;17(7):705–15.

Article  CAS  PubMed  Google Scholar 

Liu J, Cheng Y, Wang H, Yang D, Liu C, Dou W, et al. Regulation of TiO2@ PVDF piezoelectric nanofiber membranes on osteogenic differentiation of mesenchymal stem cells. Nano Energy. 2023;115:108742.

Article  CAS 

留言 (0)

沒有登入
gif