Nonthermal biocompatible plasma in stimulating osteogenic differentiation by targeting p38/ FOXO1 and PI3K/AKT pathways in hBMSCs

Li J, Chen X, Lu L, Yu X. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev. 2020;52:88–98.

Article  Google Scholar 

Chen Z, Du D, Fu Y, Wu J, Guo D, Li Y, et al. Citric acid-modified pH-sensitive bone-targeted delivery of estrogen for the treatment of postmenopausal osteoporosis. Mater Today Bio. 2023;22:100747.

Article  Google Scholar 

Zheng M, Wan Y, Liu G, Gao Y, Pan X, You W, et al. Differences in the prevalence and risk factors of osteoporosis in chinese urban and rural regions: a cross-sectional study. BMC Musculoskelet Disord. 2023;24:46.

Article  Google Scholar 

Moayyeri A, Warden J, Han S, Suh HS, Pinedo-Villanueva R, Harvey NC, et al. Estimating the economic burden of osteoporotic fractures in a multinational study: a real-world data perspective. Osteoporos Int. 2023;34:2121–32.

Article  Google Scholar 

Abe K, Inage K, Yoshimura K, Sato D, Yamashita K, Yamashita M, et al. Deaths caused by osteoporotic fractures in Japan: an epidemiological study. J Orthop Sci. 2023. https://doi.org/10.1016/j.jos.2023.10.013.

Paolantonio M, Di Tullio M, Giraudi M, Romano L, Secondi L, Paolantonio G, et al. Periodontal regeneration by leukocyte and platelet-rich fibrin with autogenous bone graft versus enamel matrix derivative with autogenous bone graft in the treatment of periodontal intrabony defects: a randomized non-inferiority trial. J Periodontol. 2020;91:1595–608.

Article  Google Scholar 

Younas A, Gu H, Zhao Y, Zhang N. Novel approaches of the nanotechnology-based drug delivery systems for knee joint injuries: a review. Int J Pharm. 2021;608:121051.

Article  Google Scholar 

Ossendorff R, Walter SG, Schildberg FA, Khoury M, Salzmann GM. Controversies in regenerative medicine: should knee joint osteoarthritis be treated with mesenchymal stromal cells. Eur Cells Mater. 2022;43:98–111.

Google Scholar 

Liu H, Zhang H, Han Y, Hu Y, Geng Z, Su J. Bacterial extracellular vesicles-based therapeutic strategies for bone and soft tissue tumors therapy. Theranostics. 2022;12:6576.

Article  Google Scholar 

Han Y, Cao L, Li G, Zhou F, Bai L, Su J. Harnessing Nucleic Acids Nanotechnology for Bone/Cartilage Regeneration. Small. 2023;19:2301996.

Wang G, Yuan Z, Yu L, Yu Y, Zhou P, Chu G, et al. Mechanically conditioned cell sheets cultured on thermo-responsive surfaces promote bone regeneration. Biomater Transl. 2023;4:27.

Google Scholar 

Triffitt JT, Wang Q. Application of stem cells in translational medicine. Biomater Transl. 2021;2:285.

Google Scholar 

Feng Z, Jin M, Liang J, Kang J, Yang H, Guo S, et al. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: a review from a mitochondrial perspective. Acta Biomater. 2023;164:1–14.

Article  Google Scholar 

Shi H, Zhou K, Wang M, Wang N, Song Y, Xiong W, et al. Integrating physicomechanical and biological strategies for BTE: biomaterials-induced osteogenic differentiation of MSCs. Theranostics. 2023;13:3245.

Article  Google Scholar 

Anastasio A, Gergues M, Lebhar MS, Rameshwar P, Fernandez-Moure J. Isolation and characterization of mesenchymal stem cells in orthopaedics and the emergence of compact bone mesenchymal stem cells as a promising surgical adjunct. World J Stem Cells. 2020;12:1341.

Article  Google Scholar 

Zou J, Yang W, Cui W, Li C, Ma C, Ji X, Hong J, Qu Z, Chen J, Liu A, Wu H. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon–bone healing. J Nanobiotechnol. 2023;21:14.

Shang F, Yu Y, Liu S, Ming L, Zhang Y, Zhou Z, et al. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioact Mater. 2021;6:666–83.

Google Scholar 

Horie T, Fukasawa K, Yamada T, Mizuno S, Iezaki T, Tokumura K, et al. Erk5 in bone marrow mesenchymal stem cells regulates bone homeostasis by preventing osteogenesis in adulthood. Stem Cells. 2022;40(4):411–22.

Article  Google Scholar 

Yamada T, Fukasawa K, Horie T, Kadota T, Lyu J, Tokumura K, et al. The role of CDK8 in mesenchymal stem cells in controlling osteoclastogenesis and bone homeostasison for publication elsewhere. Stem Cell Reports. 2022;17:1576–88.

Mariani C, Meneghetti E, Zambon D, Elena N, Agueci A, Melchior C. Use of bone marrow derived mesenchymal stem cells for the treatment of osteoarthritis: a retrospective long-term follow-up study. J Clin Orthop Trauma. 2023;36:102084.

Article  Google Scholar 

Moriguchi Y, Lee DS, Chijimatsu R, Thamina K, Masuda K, Itsuki D, et al. Impact of non-thermal plasma surface modification on porous calcium hydroxyapatite ceramics for bone regeneration. PLoS One. 2018;13:1–18.

Article  Google Scholar 

Bernhardt T, Semmler ML, Schäfer M, Bekeschus S, Emmert S, Boeckmann L. Plasma medicine: applications of cold atmospheric pressure plasma in dermatology. Oxid Med Cell Longev. 2019;2019:3873928.

Article  Google Scholar 

Ah K, Jing M, Eom S, Yoon S, Ryu S, Bong S, et al. Non-thermal dielectric-barrier discharge plasma induces reactive oxygen species by epigenetically modifying the expression of NADPH oxidase family genes in keratinocytes. Redox Biol. 2020;37:101698.

Article  Google Scholar 

Przekora A, Pawlat J, Terebun P, Duday D, Canal C, Hermans S, Audemar M, Labay C, Thomann J.S. Ginalska G. The effect of low temperature atmospheric nitrogen plasma on MC3T3-E1 preosteoblast proliferation and differentiation in vitro. J Phys D Appl Phys. 2019;52:275401.

Tominami K, Kanetaka H, Sasaki S, Mokudai T, Kaneko T, Niwano Y. Cold atmospheric plasma enhances osteoblast differentiation. PLoS One. 2017;12:1–15.

Article  Google Scholar 

Barjasteh A, Kaushik N, Choi EH. Cold atmospheric pressure plasma : a growing paradigm in diabetic wound healing — mechanism and clinical significance. 2023.

Google Scholar 

Lin ZH, Cheng KY, Cheng YP, Tschang CYT, Chiu HY, Yeh NL, et al. Acute rat cutaneous wound healing for small and large wounds using Ar/O2 atmospheric-pressure plasma jet treatment. Plasma Med. 2017;7:227–44.

Article  Google Scholar 

Lou BS, Hsieh JH, Chen CM, Hou CW, Wu HY, Chou PY, Lai CH, Lee JW. Helium/argon-generated cold atmospheric plasma facilitates cutaneous wound healing. Front Bioeng Biotechnol. 2020;8:683.

Akter M, Jangra A, Choi SA, Choi EH, Han I. Non-thermal atmospheric pressure bio-compatible plasma stimulates apoptosis via p38/MAPK mechanism in U87 malignant glioblastoma. Cancers (Basel). 2020;12:1–13.

Article  Google Scholar 

Yadav DK, Adhikari M, Kumar S, Ghimire B, Han I, Kim MH, et al. Cold atmospheric plasma generated reactive species aided inhibitory effects on human melanoma cells: an in vitro and in silico study. Sci Rep. 2020;10:3396.

Article  Google Scholar 

Arai S, Bidbayasakh K, Fukuda A, Takashima K, Kurita H. Oxidative modification in nuclear and mitochondrial DNA and its removal in A549 human lung cancer cells exposed to cold atmospheric- pressure plasma. 2022.

Book  Google Scholar 

Lamichhane P, Acharya TR, Kaushik N, Nguyen LN, Lim JS, Hessel V, et al. Non-thermal argon plasma jets of various lengths for selective reactive oxygen and nitrogen species production. J Environ Chem Eng. 2022;10:107782.

Article  Google Scholar 

Acharya TR, Lamichhane P, Jaiswal A, Amsalu K, Hong YJ, Kaushik N, et al. The potential of multicylindrical dielectric barrier discharge plasma for diesel-contaminated soil remediation and biocompatibility assessment. Environ Res. 2024;240:117398.

Article  Google Scholar 

Acharya TR, Lee GJ, Choi EH. Influences of plasma plume length on structural, optical and dye degradation properties of citrate-stabilized silver nanoparticles synthesized by plasma-assisted reduction. Nanomaterials. 2022;12:2367.

Article  Google Scholar 

Cells F, Okuno M, Aoki S, Kawai S, Imataki R, Abe Y, et al. Effect of non-thermal atmospheric pressure plasma on differentiation potential of human deciduous dental pulp. Appl Sci. 2021.

Han I, Choi EH. The role of non-thermal atmospheric pressure biocompatible plasma in the differentiation of osteoblastic precursor cells, MC3T3-E1. Oncotarget. 2017;8:36399–409.

Article  Google Scholar 

Han I, Rana JN, Kim J-H, Choi EH, Kim Y. A non-thermal biocompatible plasma-modified chitosan scaffold enhances osteogenic differentiation in bone marrow stem cells. Pharmaceutics. 2022;14. Available from: https://www.mdpi.com/1999-4923/14/2/465.

Yao D. Bone metabolism regulation: implications for the treatment of bone diseases. Biomed Pharmacother. 2020;129: 110494.

Article  Google Scholar 

Choi JW, Kang SU, Kim YE, Park JK, Yang SS, Kim YS, et al. Novel therapeutic effects of non-thermal atmospheric pressure plasma for muscle regeneration and differentiation. Sci Rep. 2016;6:28829.

Article  Google Scholar 

Park J, Lee H, Lee HJ, Kim GC, Kim S-S, Han S, et al. Non-thermal atmospheric pressure plasma is an excellent tool to activate proliferation in various mesoderm-derived human adult stem cells. Free Radic Biol Med. 2019;134:374–84.

Article  Google Scholar 

Park J, Lee H, Lee HJ, Kim GC, Kim DY, Han S, et al. Non-thermal atmospheric pressure plasma efficiently promotes the proliferation of adipose tissue-derived stem cells by activating NO-response pathways. Sci Rep. 2016;6:39298.

Article  Google Scholar 

Kobayashi M, Tomoda K, Morihara H, Asahi M, Shimizu T, Kumagai S. Non-thermal atmospheric-pressure plasma potentiates mesodermal differentiation of human induced pluripotent stem cells. Heliyon. 2022;8(12):e12009.

Article  Google Scholar 

Jang J-Y, Hong YJ, Lim J, Choi JS, Choi EH, Kang S, et al. Cold atmospheric plasma (CAP), a novel physicochemical source, induces neural differentiation through cross-talk between the specific RONS cascade and Trk/Ras/ERK signaling pathway. Biomaterials. 2018;156:258–73.

Article  Google Scholar 

Jha N, Ryu JJ, Choi EH, Han I. Comparison of direct and indirect non-thermal atmospheric plasma effect on human periodontal ligament stem cells. J Biomater Tissue Eng. 2017;7:969–77.

Article  Google Scholar 

Wei Y, Tang C, Zhang J, Li Z, Zhang X, Miron RJ, et al. Extracellular vesicles derived from the mid-to-late stage of osteoblast differentiation markedly enhance osteogenesis in vitro and in vivo. Biochem Biophys Res Commun. 2019;514:252–8.

Article  Google Scholar 

Villalpando-Rodriguez GE, Gibson SB. Review Article Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat. Oxid Med Cell Longev. 2021;2021:9912436.

Article  Google Scholar 

Hoefen RJ, Berk BC. The role of MAP kinases in endothelial activation. Vascul Pharmacol. 2002;38:271–3.

Article  Google Scholar 

Chan WC, Tan Z, To MK, Chan D. Regulation and role of transcription factors in osteogenesis. Int J Mol Sci. 2021;22:5445.

Halloran D, Durbano HW, Nohe A. Bone morphogenetic protein-2 in development and bone homeostasis. J Dev Biol. 2020;8:19.

Zimmermann LA, Correns A, Furlan AG, Spanou CES, Sengle G. Multi skilled platform. Cell Signal. 2021;85:110071.

Article  Google Scholar 

Yang C, Liu X, Zhao K, Zhu Y, Hu B, Zhou Y, et al. miRNA-21 promotes osteogenesis via the PTEN / PI3K / Akt / HIF-1 α pathway and enhances bone regeneration in critical size defects. Stem Cell Res Ther. 2019;2:1–11.

Article  Google Scholar 

留言 (0)

沒有登入
gif