Monophosphoryl lipid A as a co-adjuvant in methicillin-resistant Staphylococcus aureus vaccine development: improvement of immune responses in a mouse model of infection

Akdis M, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016;138(4):984–1010.

Article  CAS  PubMed  Google Scholar 

Alemalhoda D, et al. Formulation of FMD vaccine in Naloxone/Alum mixture: a potency study. bioRxiv, 2022;20:2022–07.

Alving CR, et al. Adjuvants for human vaccines. Curr Opin Immunol. 2012;24(3):310–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson AS, et al. Vaccination against nosocomial infections in elderly adults. Vaccines for older adults: current practices and future opportunities. 2020;43:193–217.

Avire NJ, et al. A review of Streptococcus pyogenes: public health risk factors, prevention and control. Pathogens. 2021;10(2):248.

Article  PubMed  PubMed Central  Google Scholar 

Bekeredjian-Ding I. Challenges for clinical development of vaccines for prevention of hospital-acquired bacterial infections. Front Immunol. 2020;11:1755.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cascioferro S, et al. Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections. ChemMedChem. 2021;16(1):65–80.

Article  CAS  PubMed  Google Scholar 

Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci. 2008;65:3231–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charerntantanakul W. Adjuvants for swine vaccines: mechanisms of actions and adjuvant effects. Vaccine. 2020;38(43):6659–81.

Article  CAS  PubMed  Google Scholar 

Chen C, et al. Monophosphoryl-lipid A (MPLA) is an efficacious adjuvant for inactivated rabies vaccines. Viruses. 2019;11(12):1118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng R, et al. Recombination monophosphoryl lipid A-derived vacosome for the development of preventive cancer vaccines. ACS Appl Mater Interfaces. 2020;12(40):44554–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chentouh R, et al. Specific features of human monocytes activation by monophosphoryl lipid A. Sci Rep. 2018;8(1):7096.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Coffman RL, et al. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010;33(4):492–503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dehnavi M, et al. Glucomannan as a polysaccharide adjuvant improved immune responses against Staphylococcus aureus: potency and efficacy studies. Microb Pathog. 2023;176: 106007.

Article  CAS  PubMed  Google Scholar 

Di Lorenzo F, et al. Activation of human toll-like receptor 4 (TLR4)·myeloid differentiation factor 2 (MD-2) by hypoacylated lipopolysaccharide from a clinical isolate of Burkholderia cenocepacia. J Biol Chem. 2015;290(35):21305–19.

Article  PubMed  PubMed Central  Google Scholar 

Dryla A, et al. Comparison of antibody repertoires against Staphylococcus aureus in healthy individuals and in acutely infected patients. Clin Vaccine Immunol. 2005;12(3):387–98.

Article  CAS  Google Scholar 

Duthie MS, et al. Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev. 2011;239(1):178–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

European Centre for Disease Prevention and Control and World Health Organization. Antimicrobial resistance surveillance in Europe 2023—2021 data. Stockholm: European Centre for Disease Prevention and Control and World Health Organization; 2023.

Ghaedi T, et al. Protective efficacy of Hla-MntC-SACOL0723 fusion protein adjuvanted in alum and MPL against Staphylococcus aureus sepsis infection in mice. J Immunol Methods. 2021;494: 113055.

Article  CAS  PubMed  Google Scholar 

Giuliano KK, et al. The epidemiology of nonventilator hospital-acquired pneumonia in the United States. Am J Infect Control. 2018;46(3):322–7.

Article  PubMed  Google Scholar 

Gupta A, et al. Toll-like receptor agonists and febrile range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release. J Biol Chem. 2013;288(4):2756–66.

Article  MathSciNet  CAS  PubMed  Google Scholar 

Haghighat S, et al. Cloning, expression and purification of autolysin from methicillin-resistant Staphylococcus aureus: potency and challenge study in Balb/c mice. Mol Immunol. 2017a;82:10–8.

Haghighat S, et al. A novel recombinant vaccine candidate comprising PBP2a and autolysin against methicillin resistant Staphylococcus aureus confers protection in the experimental mice. Mol Immunol. 2017b;91:1–7.

Haghighat S, et al. Recombinant PBP2a/autolysin conjugate as PLGA-based nanovaccine induced humoral responses with opsonophagocytosis activity, and protection versus methicillin-resistant Staphylococcus aureus infection. Iran J Basic Med Sci. 2022;25(4):442.

PubMed  PubMed Central  Google Scholar 

Han Y, et al. Construction of monophosphoryl lipid A producing Escherichia coli mutants and comparison of immuno-stimulatory activities of their lipopolysaccharides. Mar Drugs. 2013;11(2):363–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heine H, et al. Tailored modulation of cellular pro-inflammatory responses with disaccharide lipid A mimetics. Front Immunol. 2021;12: 631797.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalali Y, et al. Passive immunotherapy with specific IgG fraction against autolysin: analogous protectivity in the MRSA infection with antibiotic therapy. Immunol Lett. 2019;212:125–31.

Article  CAS  PubMed  Google Scholar 

Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.

Article  CAS  PubMed  Google Scholar 

Kremer M, et al. Kupffer cell and interleukin-12–dependent loss of natural killer T cells in hepatosteatosis. Hepatology. 2010;51(1):130–41.

Article  CAS  PubMed  Google Scholar 

Micoli F, et al. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol. 2021;19(5):287–302.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mortazavi SS, et al. Recombinant PBP2a of methicillin-resistant S. aureus formulation in Alum and Montanide ISA266 adjuvants induced cellular and humoral immune responses with protection in Balb/C mice. Microb Pathog. 2020;140:103945.

Article  CAS  PubMed  Google Scholar 

Moyer TJ, et al. Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nat Med. 2020;26(3):430–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mukagendaneza MJ, et al. Incidence, root causes, and outcomes of surgical site infections in a tertiary care hospital in Rwanda: a prospective observational cohort study. Patient Saf Surg. 2019;13:1–8.

Article  Google Scholar 

Nguyen QT, et al. E. coli-produced monophosphoryl lipid a significantly enhances protective immunity of pandemic H1N1 vaccine. Vaccines. 2020;8(2):306.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patil HP, et al. Evaluation of monophosphoryl lipid A as adjuvant for pulmonary delivered influenza vaccine. J Control Release. 2014;174:51–62.

Article  CAS  PubMed  Google Scholar 

Pérez O, et al. Adjuvants are key factors for the development of future vaccines: lessons from the finlay adjuvant platform. Front Immunol. 2013;4:407.

Article  PubMed  PubMed Central  Google Scholar 

Ranjbariyan A, et al. Synthetic selenium nanoparticles as co-adjuvant improved immune responses against methicillin-resistant Staphylococcus aureus. World J Microbiol Biotechnol. 2023;39(1):16.

Article  CAS  Google Scholar 

Reed SG, et al. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19(12):1597–608.

Article  CAS  PubMed  Google Scholar 

Rodríguez-Baño J, et al. Epidemiology and clinical features of community-acquired, healthcare-associated and nosocomial bloodstream infections in tertiary-care and community hospitals. Clin Microbiol Infect. 2010;16(9):1408–13.

Article  PubMed  Google Scholar 

Saganuwan SA. A modified arithmetical method of Reed and Muench for determination of a relatively ideal median lethal dose (LD50). Afr J Pharm Pharmacol. 2011;5(12):1543–6.

Article  Google Scholar 

Samia NI, et al. Methicillin-resistant staphylococcus aureus nosocomial infection has a distinct epidemiological position and acts as a marker for overall hospital-acquired infection trends. Sci Rep. 2022;12(1):17007.

Article  ADS  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif