The conneXion between sex and immune responses

Libert, C., Dejager, L. & Pinheiro, I. The X chromosome in immune functions: when a chromosome makes the difference. Nat. Rev. Immunol. 10, 594–604 (2010).

Article  CAS  PubMed  Google Scholar 

Pasche, B. et al. Sex-dependent susceptibility to Listeria monocytogenes infection is mediated by differential interleukin-10 production. Infect. Immun. 73, 5952–5960 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Natri, H., Garcia, A. R., Buetow, K. H., Trumble, B. C. & Wilson, M. A. The pregnancy pickle: evolved immune compensation due to pregnancy underlies sex differences in human diseases. Trends Genet. 35, 478–488 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patin, E. et al. Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors. Nat. Immunol. 19, 302–314 (2018).

Article  CAS  PubMed  Google Scholar 

Clave, E. et al. Human thymopoiesis is influenced by a common genetic variant within the TCRA-TCRD locus. Sci. Transl. Med. 10, eaa02966 (2018).

Article  Google Scholar 

Bongen, E. et al. Sex differences in the blood transcriptome identify robust changes in immune cell proportions with aging and influenza infection. Cell Rep. 29, 1961–1973.e4 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdullah, M. et al. Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell. Immunol. 272, 214–219 (2012).

Article  CAS  PubMed  Google Scholar 

Melzer, S. et al. Reference intervals for leukocyte subsets in adults: results from a population-based study using 10-color flow cytometry. Cytom. B Clin. Cytom. 88, 270–281 (2015).

Article  Google Scholar 

Huang, Z. et al. Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis. Proc. Natl Acad. Sci. USA 118, e2023216118 (2021).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Wikby, A., Mansson, I. A., Johansson, B., Strindhall, J. & Nilsson, S. E. The immune risk profile is associated with age and gender: findings from three Swedish population studies of individuals 20–100 years of age. Biogerontology 9, 299–308 (2008).

Article  PubMed  Google Scholar 

Carr, E. J. et al. The cellular composition of the human immune system is shaped by age and cohabitation. Nat. Immunol. 17, 461–468 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan, S. R. et al. Determinants of serum immunoglobulin levels: a systematic review and meta-analysis. Front. Immunol. 12, 664526 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hensel, J. A., Khattar, V., Ashton, R. & Ponnazhagan, S. Characterization of immune cell subtypes in three commonly used mouse strains reveals gender and strain-specific variations. Lab. Invest. 99, 93–106 (2019).

Article  CAS  PubMed  Google Scholar 

Breznik, J. A., Schulz, C., Ma, J., Sloboda, D. M. & Bowdish, D. M. E. Biological sex, not reproductive cycle, influences peripheral blood immune cell prevalence in mice. J. Physiol. 599, 2169–2195 (2021).

Article  CAS  PubMed  Google Scholar 

Scotland, R. S., Stables, M. J., Madalli, S., Watson, P. & Gilroy, D. W. Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood 118, 5918–5927 (2011).

Article  CAS  PubMed  Google Scholar 

Menees, K. B. et al. Sex- and age-dependent alterations of splenic immune cell profile and NK cell phenotypes and function in C57BL/6J mice. Immun. Ageing 18, 3 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng, M. I. et al. The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences. Nat. Immunol. 24, 780–791 (2023).

Article  CAS  PubMed  Google Scholar 

Schmiedel, B. J. et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell 175, 1701–1715.e16 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Durandy, A., Cantaert, T., Kracker, S. & Meffre, E. Potential roles of activation-induced cytidine deaminase in promotion or prevention of autoimmunity in humans. Autoimmunity 46, 148–156 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Young, N. A. et al. Estrogen modulation of endosome-associated Toll-like receptor 8: an IFNα-independent mechanism of sex-bias in systemic lupus erythematosus. Clin. Immunol. 151, 66–77 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, J. et al. Oestrogen up-regulates interleukin-21 production by CD4+ T lymphocytes in patients with systemic lupus erythematosus. Immunology 142, 573–580 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, S. et al. Interleukin-23 drives expansion of Thelper 17 cells through epigenetic regulation by signal transducer and activators of transcription 3 in lupus patients. Rheumatology 59, 3058–3069 (2020).

Article  CAS  PubMed  Google Scholar 

Berghofer, B. et al. TLR7 ligands induce higher IFN-α production in females. J. Immunol. 177, 2088–2096 (2006).

Article  PubMed  Google Scholar 

Meier, A. et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat. Med. 15, 955–959 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seillet, C. et al. The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor α signaling. Blood 119, 454–464 (2012).

Article  CAS  PubMed  Google Scholar 

Regis, E. et al. Sex differences in innate anti-viral immune responses to respiratory viruses and in their clinical outcomes in a birth cohort study. Sci. Rep. 11, 23741 (2021).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Congy-Jolivet, N. et al. Monocytes are the main source of STING-mediated IFN-α production. EBioMedicine 80, 104047 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Griesbeck, M. et al. Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-α production in women. J. Immunol. 195, 5327–5336 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gal-Oz, S. T. et al. ImmGen report: sexual dimorphism in the immune system transcriptome. Nat. Commun. 10, 4295 (2019).

Article  ADS  PubMed  PubMed Central  Google Scholar 

Zeng, Z. et al. Sex-hormone-driven innate antibodies protect females and infants against EPEC infection. Nat. Immunol. 19, 1100–1111 (2018).

Article  CAS  PubMed  Google Scholar 

McDonald, G. et al. Female bias in systemic lupus erythematosus is associated with the differential expression of X-linked Toll-like receptor 8. Front. Immunol. 6, 457 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Souyris, M. et al. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3, eaap8855 (2018).

Article  PubMed  Google Scholar 

Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

Article  CAS  PubMed  Google Scholar 

Aomatsu, M., Kato, T., Kasahara, E. & Kitagawa, S. Gender difference in tumor necrosis factor-α production in human neutrophils stimulated by lipopolysaccharide and interferon-γ. Biochem. Biophys. Res. Commun. 441, 220–225 (2013).

Article  CAS  PubMed  Google Scholar 

Ho, C. H. et al. Testosterone suppresses uropathogenic Escherichia coli invasion and colonization within prostate cells and inhibits inflammatory responses through JAK/STAT-1 signaling pathway. PLoS ONE 12, e0180244 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. Nat. Rev. Immunol. 8, 737–744 (2008).

Article  CAS 

留言 (0)

沒有登入
gif