The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases

Lu, L., Barbi, J. & Pan, F. The regulation of immune tolerance by FOXP3. Nat. Rev. Immunol. 17, 703–717 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panduro, M., Benoist, C. & Mathis, D. Tissue Tregs. Annu. Rev. Immunol. 34, 609–633 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyara, M. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30, 899–911 (2009).

Article  CAS  PubMed  Google Scholar 

Duhen, T., Duhen, R., Lanzavecchia, A., Sallusto, F. & Campbell, D. J. Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector TH cells. Blood 119, 4430–4440 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Halim, L. et al. An atlas of human regulatory T helper-like cells reveals features of TH2-like Tregs that support a tumorigenic environment. Cell Rep. 20, 757–770 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheru, N., Hafler, D. A. & Sumida, T. S. Regulatory T cells in peripheral tissue tolerance and diseases. Front. Immunol. 14, 1154575 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakaguchi, S., Wing, K., Onishi, Y., Prieto-Martin, P. & Yamaguchi, T. Regulatory T cells: how do they suppress immune responses? Int. Immunol. 21, 1105–1111 (2009).

Article  CAS  PubMed  Google Scholar 

Schmidt, A., Oberle, N. & Krammer, P. H. Molecular mechanisms of Treg-mediated T cell suppression. Front. Immunol. 3, 51 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trujillo-Ochoa, J. L., Kazemian, M. & Afzali, B. The role of transcription factors in shaping regulatory T cell identity. Nat. Rev. Immunol. 23, 842–856 (2023).

Article  CAS  PubMed  Google Scholar 

Carbone, F. et al. Regulatory T cell proliferative potential is impaired in human autoimmune disease. Nat. Med. 20, 69–74 (2014).

Article  CAS  PubMed  Google Scholar 

John, K. et al. Increased apoptosis of regulatory T cells in patients with active autoimmune hepatitis. Cell Death Dis. 8, 3219 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

Article  CAS  PubMed  Google Scholar 

Wildin, R. S. et al. X-Linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

Article  CAS  PubMed  Google Scholar 

Viglietta, V., Baecher-Allan, C., Weiner, H. L. & Hafler, D. A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17, 673–675 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baecher-Allan, C. M. et al. CD2 costimulation reveals defective activity by human CD4+CD25hi regulatory cells in patients with multiple sclerosis. J. Immunol. 186, 3317–3326 (2011).

Article  CAS  PubMed  Google Scholar 

Brusko, T. M., Wasserfall, C. H., Clare-Salzler, M. J., Schatz, D. A. & Atkinson, M. A. Functional defects and the influence of age on the frequency of CD4+CD25+ T-cells in type 1 diabetes. Diabetes 54, 1407–1414 (2005).

Article  CAS  PubMed  Google Scholar 

Lindley, S. et al. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes 54, 92–99 (2005).

Article  CAS  PubMed  Google Scholar 

Haseda, F., Imagawa, A., Murase-Mishiba, Y., Terasaki, J. & Hanafusa, T. CD4+CD45RA–FoxP3high activated regulatory T cells are functionally impaired and related to residual insulin-secreting capacity in patients with type 1 diabetes. Clin. Exp. Immunol. 173, 207–216 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Roon, J. A., Hartgring, S. A., van der Wurff-Jacobs, K. M., Bijlsma, J. W. & Lafeber, F. P. Numbers of CD25+Foxp3+ T cells that lack the IL-7 receptor are increased intra-articularly and have impaired suppressive function in RA patients. Rheumatology 49, 2084–2089 (2010).

Article  PubMed  Google Scholar 

Nie, H. et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat. Med. 19, 322–328 (2013).

Article  CAS  PubMed  Google Scholar 

Bonelli, M. et al. Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). Int. Immunol. 20, 861–868 (2008).

Article  CAS  PubMed  Google Scholar 

Hsieh, C. S., Lee, H. M. & Lio, C. W. Selection of regulatory T cells in the thymus. Nat. Rev. Immunol. 12, 157–167 (2012).

Article  CAS  PubMed  Google Scholar 

Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Chen, W. et al. Conversion of peripheral CD4+CD25– naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanamori, M., Nakatsukasa, H., Okada, M., Lu, Q. & Yoshimura, A. Induced regulatory T cells: their development, stability, and applications. Trends Immunol. 37, 803–811 (2016).

Article  CAS  PubMed  Google Scholar 

Hill, J. A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).

Article  CAS  PubMed  Google Scholar 

Allan, S. E. et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 19, 345–354 (2007).

Article  CAS  PubMed  Google Scholar 

Tran, D. Q., Ramsey, H. & Shevach, E. M. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-β dependent but does not confer a regulatory phenotype. Blood 110, 2983–2990 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thornton, A. M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433–3441 (2010).

Article  CAS  PubMed  Google Scholar 

Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ Treg cells. J. Exp. Med. 209, 1723–1742, S1 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szurek, E. et al. Differences in expression level of helios and neuropilin-1 do not distinguish thymus-derived from extrathymically-induced CD4+Foxp3+ regulatory T cells. PLoS ONE 10, e0141161 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Elkord, E. Helios should not be cited as a marker of human thymus-derived Tregs. Commentary: Helios+ and Helios– cells coexist within the natural FOXP3+ T regulatory cell subset in humans. Front. Immunol. 7, 276 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Haribhai, D. et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 35, 109–122 (2011).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif