Taurine, a Naturally Occurring Amino Acid, as a Physical Stability Enhancer of Different Monoclonal Antibodies

Breedveld FC. Therapeutic monoclonal antibodies. The Lancet. 2000;355(9205):735–40.

Article  CAS  Google Scholar 

Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and characterization of therapeutic antibody aggregates. J Biol Chem. 2011;286(28):25118–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bansal R, Dash R, Rathore AS. Impact of mAb aggregation on its biological activity: rituximab as a case study. J Pharm Sci. 2020;109(9):2684–98.

Article  CAS  PubMed  Google Scholar 

Sreenivasan S, Jiskoot W, Rathore AS. Rapid aggregation of therapeutic monoclonal antibodies by bubbling induced air/liquid interfacial and agitation stress at different conditions. Eur J Pharm Biopharm. 2021;168:97–109.

Article  CAS  PubMed  Google Scholar 

Joubert MK, Hokom M, Eakin C, Zhou L, Deshpande M, Baker MP, Goletz TJ, Kerwin BA, Chirmule N, Narhi LO, Jawa V. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J Biol Chem. 2012;287(30):25266–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joshi S, Rathore AS. Assessment of structural and functional comparability of biosimilar products: trastuzumab as a case study. BioDrugs. 2020;34:209–23.

Article  CAS  PubMed  Google Scholar 

Kannan A, Shieh IC, Hristov P, Fuller GG. In-use interfacial stability of monoclonal antibody formulations diluted in saline iv bags. J Pharm Sci. 2021;110(4):1687–92.

Article  CAS  PubMed  Google Scholar 

Den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, Seidl A, Hainzl O, Jiskoot W. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res. 2011;28(4):920–33.

Article  Google Scholar 

Das TK, Narhi LO, Sreedhara A, Menzen T, Grapentin C, Chou DK, Antochshuk V, Filipe V. Stress factors in mAb drug substance production processes: critical assessment of impact on product quality and control strategy. J Pharm Sci. 2020;109(1):116–33.

Article  CAS  PubMed  Google Scholar 

Zheng JY, Janis LJ. Influence of pH, buffer species, and storage temperature on physicochemical stability of a humanized monoclonal antibody LA298. Int J Pharm. 2006;308(1–2):46–51.

Article  CAS  PubMed  Google Scholar 

Bansal R, Dhawan S, Chattopadhyay S, Maurya GP, Haridas V, Rathore AS. Peptide dendrons as thermal-stability amplifiers for immunoglobulin G1 monoclonal antibody biotherapeutics. Bioconjug Chem. 2017;28(10):2549–59.

Article  CAS  PubMed  Google Scholar 

Thiagarajan G, Semple A, James JK, Cheung JK, Shameem M. A comparison of biophysical characterization techniques in predicting monoclonal antibody stability. MAbs. 2016;8(6):1088–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tajoddin NN, Konermann L. Structural dynamics of a thermally stressed monoclonal antibody characterized by temperature-dependent H/D exchange mass spectrometry. Anal Chem. 2022;94(44):15499–509.

Article  CAS  PubMed  Google Scholar 

Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical stability of monoclonal antibodies: a review. J Pharm Sci. 2020;109(1):169–90.

Article  PubMed  Google Scholar 

Hawe A, Kasper JC, Friess W, Jiskoot W. Structural properties of monoclonal antibody aggregates induced by freeze–thawing and thermal stress. Eur J Pharm Sci. 2009;38(2):79–87.

Article  CAS  PubMed  Google Scholar 

Brader ML, Estey T, Bai S, Alston RW, Lucas KK, Lantz S, Landsman P, Maloney KM. Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic monoclonal antibodies. Mol Pharm. 2015;12(4):1005–17.

Article  CAS  PubMed  Google Scholar 

Mason BD, Schöneich C, Kerwin BA. Effect of pH and light on aggregation and conformation of an IgG1 mAb. Mol Pharm. 2012;9(4):774–90.

Article  CAS  PubMed  Google Scholar 

Zheng K, Ren D, Wang YJ, Lilyestrom W, Scherer T, Hong JK, Ji JA. Monoclonal antibody aggregation associated with free radical induced oxidation. Int J Mol Sci. 2021;22(8):3952.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shah DD, Zhang J, Hsieh MC, Sundaram S, Maity H, Mallela KM. Effect of peroxide-versus alkoxyl-induced chemical oxidation on the structure, stability, aggregation, and function of a therapeutic monoclonal antibody. J Pharm Sci. 2018;107(11):2789–803.

Article  CAS  PubMed  Google Scholar 

Shah DD, Zhang J, Maity H, Mallela KM. Effect of photo-degradation on the structure, stability, aggregation, and function of an IgG1 monoclonal antibody. Int J Pharm. 2018;547(1–2):438–49.

Article  CAS  PubMed  Google Scholar 

Chumsae C, Gaza-Bulseco G, Sun J, Liu H. Comparison of methionine oxidation in thermal stability and chemically stressed samples of a fully human monoclonal antibody. J Chromatogr B. 2007;850(1–2):285–94.

Article  CAS  Google Scholar 

Sreenivasan S, Rathore AS. Combined presence of ferrous ions and hydrogen peroxide in normal saline and in vitro models induces enhanced aggregation of therapeutic IgG due to hydroxyl radicals. Mol Pharm. 2023.

Bhojane PP, Joshi S, Sahoo SJ, Rathore AS. Unexplored excipients in biotherapeutic formulations: natural osmolytes as potential stabilizers against thermally induced aggregation of IgG1 biotherapeutics. AAPS PharmSciTech. 2022;23:1–12.

Article  Google Scholar 

Nayak PK, Goode M, Chang DP, Rajagopal K. Ectoine and hydroxyectoine stabilize antibodies in spray-dried formulations at elevated temperature and during a freeze/thaw process. Mol Pharm. 2020;17(9):3291–7.

Article  CAS  PubMed  Google Scholar 

Kang J, Lin X, Penera J. Rapid formulation development for monoclonal antibodies. BioProcess Int. 2016;14(4):40.

CAS  Google Scholar 

Cheng W, Joshi SB, He F, Brems DN, He B, Kerwin BA, Volkin DB, Russell Middaugh C. Comparison of high-throughput biophysical methods to identify stabilizing excipients for a model IgG2 monoclonal antibody: conformational stability and kinetic aggregation measurements. J Pharm Sci. 2012;101(5):1701–20.

Article  CAS  PubMed  Google Scholar 

Ramos I, Lourenço EC, Ascenso OS, Maycock CD, Dasika M, Dickson ML, Ventura MR. The effect of new compounds in stabilizing downstream monoclonal antibody (mAb) process intermediates. Int J Pharm. 2019;565:162–73.

Article  CAS  PubMed  Google Scholar 

Chaturvedi SK, Alam P, Khan JM, Siddiqui MK, Kalaiarasan P, Subbarao N, Ahmad Z, Khan RH. Biophysical insight into the anti-amyloidogenic behavior of taurine. Int J Biol Macromol. 2015;80:375–84.

Article  CAS  PubMed  Google Scholar 

Jacobsen JG, Smith LH. Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev. 1968;48(2):424–511.

Article  CAS  PubMed  Google Scholar 

Mastrella L, Moretti P, Pieraccini S, Magi S, Piccirillo S, Ortore MG. Taurine stabilizing effect on lysozyme. Life. 2022;12(1):133.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Bhat MA, Ahmad K, Khan MSA, Bhat MA, Almatroudi A, Rahman S, Jan AT. Expedition into taurine biology: structural insights and therapeutic perspective of taurine in neurodegenerative diseases. Biomolecules. 2020;10(6):863.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bruździak P, Panuszko A, Kaczkowska E, Piotrowski B, Daghir A, Demkowicz S, Stangret J. Taurine as a water structure breaker and protein stabilizer. Amino Acids. 2018;50:125–40.

Article  PubMed  Google Scholar 

Draganov GB, Pencheva IP, Todorova KA. UV-spectrophotometry determination of taurine in energy drink mixtures. Int J Nutr Food Sci. 2014;3(2):123–6.

Article  Google Scholar 

Nguyen TD, Nguyen MH, Vu MT, Duong HA, Pham HV, Mai TD. Dual-channeled capillary electrophoresis coupled with contactless conductivity detection for rapid determination of choline and taurine in energy drinks and dietary supplements. Talanta. 2019;193:168–75.

Article  CAS  PubMed  Google Scholar 

Caine JJ, Geracioti TD. Taurine, energy drinks, and neuroendocrine effects. Cleve Clin J Med. 2016;83(12):895–904. https://doi.org/10.3949/ccjm.83a.15050.

Article  PubMed  Google Scholar 

Chesney RW, Helms RA, Christensen M, Budreau AM, Han X, Sturman JA. The role of taurine in infant nutrition. Taurine 3: Cellular and Regulatory Mechanisms. 1998. p. 463–76.

Mojtabavi S, Samadi N, Faramarzi MA. Osmolyte-induced folding and stability of proteins: concepts and characterization. Iran J Pharm Res IJPR. 2019;18(Suppl1):13.

CAS  PubMed  Google Scholar 

Militante JD, Lombardini JB. Treatment of hypertension with oral taurine: experimental and clinical studies. Amino Acids. 2002;23(4):381–93.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif