Characterization of CYP3A5 Selective Inhibitors for Reaction Phenotyping of Drug Candidates

Saravanakumar A, Sadighi A, Ryu R, Akhlaghi F. Physicochemical properties, biotransformation, and transport pathways of established and newly approved medications: a systematic review of the top 200 most prescribed drugs vs. the FDA-approved drugs between 2005 and 2016. Clin Pharmacokinet. 2019;58(10):1281–94. https://doi.org/10.1007/s40262-019-00750-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daly AK. Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet. 2006;45(1):13–31. https://doi.org/10.2165/00003088-200645010-00002.

Article  CAS  PubMed  Google Scholar 

Hines RN. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. 2007;21(4):169–75. https://doi.org/10.1002/jbt.20179.

Article  CAS  PubMed  Google Scholar 

Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Expression of CYP3A in the human liver–evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–34. https://doi.org/10.1111/j.1432-1033.1997.00625.x.

Article  CAS  PubMed  Google Scholar 

Wilkening S, Bader A. Differential regulation of CYP3A4 and CYP3A7 by dimethylsulfoxide in primary human hepatocytes. Basic Clin Pharmacol Toxicol. 2004;95(2):92–3. https://doi.org/10.1111/j.1742-7843.2004.950209.x.

Article  CAS  PubMed  Google Scholar 

Betts S, Björkhem-Bergman L, Rane A, Ekström L. Expression of CYP3A4 and CYP3A7 in human foetal tissues and its correlation with nuclear receptors. Basic Clin Pharmacol Toxicol. 2015;117(4):261–6. https://doi.org/10.1111/bcpt.12392.

Article  CAS  PubMed  Google Scholar 

Zientek MA, Youdim K. Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab Dispos. 2015;43(1):163–81. https://doi.org/10.1124/dmd.114.058750.

Article  CAS  PubMed  Google Scholar 

Leeder JS, Gaedigk R, Marcucci KA, Gaedigk A, Vyhlidal CA, Schindel BP, et al. Variability of CYP3A7 expression in human fetal liver. J Pharmacol Exp Ther. 2005;314:626–35. https://doi.org/10.1124/jpet.105.086504.

Article  CAS  PubMed  Google Scholar 

Burk O, Tegude H, Koch I, Hustert E, Wolbold R, Glaeser H, et al. Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J Biol Chem. 2002;277:24280–8. https://doi.org/10.1074/jbc.M202345200.

Article  CAS  PubMed  Google Scholar 

Langman L, van Gelder T, van Schaik RHN. Chapter 5 - Pharmacogenomics aspect of immunosuppressant therapy. In: Oellerich M, Dasgupta A, editors. Personalized immunosuppression in transplantation. San Diego: Elsevier; 2016. p. 109–24.

Chapter  Google Scholar 

Hsu M-H, Johnson EF. Active-site differences between substrate-free and ritonavir-bound cytochrome P450 (CYP) 3A5 reveal plasticity differences between CYP3A5 and CYP3A4. J Biol Chem. 2019;294(20):8015–22. https://doi.org/10.1074/jbc.RA119.007928.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-Å resolution*. J Biol Chem. 2004;279(37):38091–4. https://doi.org/10.1074/jbc.C400293200.

Article  CAS  PubMed  Google Scholar 

Tseng E, Walsky RL, Luzietti RA Jr, Harris JJ, Kosa RE, Goosen TC, et al. Relative contributions of cytochrome CYP3A4 versus CYP3A5 for CYP3A-cleared drugs assessed in vitro using a CYP3A4-selective inactivator (CYP3cide). Drug Metab Dispos. 2014;42:1163–73. https://doi.org/10.1124/dmd.114.057000.

Article  CAS  PubMed  Google Scholar 

Vourvahis M, McFadyen L, Heera J, Clark A. Clinical relevance of CYP3A5 genotype on maraviroc exposures. Drug Metab Dispos. 2015;43(5):771–2. https://doi.org/10.1124/dmd.115.063321.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dennison JB, Kulanthaivel P, Barbuch RJ, Renbarger JL, Ehlhardt WJ, Hall SD. Selective metabolism of vincristine in vitro by CYP3A5. Drug Metab Dispos. 2006;34(8):1317–27. https://doi.org/10.1124/dmd.106.009902.

Article  CAS  PubMed  Google Scholar 

Khan AR, Raza A, Firasat S, Abid A. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis. Pharmacogenomics J. 2020;20(4):553–62. https://doi.org/10.1038/s41397-019-0144-7.

Article  CAS  PubMed  Google Scholar 

Jin Y, Wang YH, Miao J, Li L, Kovacs RJ, Marunde R, et al. Cytochrome P450 3A5 genotype is associated with verapamil response in healthy subjects. Clin Pharmacol Ther. 2007;82:579–85. https://doi.org/10.1038/sj.clpt.6100208.

Article  CAS  PubMed  Google Scholar 

Zhu HJ, Yuan SH, Fang Y, Sun XZ, Kong H, Ge WH. The effect of CYP3A5 polymorphism on dose-adjusted cyclosporine concentration in renal transplant recipients: a meta-analysis. Pharmacogenomics J. 2011;11(3):237–46. https://doi.org/10.1038/tpj.2010.26.

Article  CAS  PubMed  Google Scholar 

Chen L, Prasad GVR. CYP3A5 polymorphisms in renal transplant recipients: influence on tacrolimus treatment. Pharmacogenomics Pers Med. 2018;11:23–33. https://doi.org/10.2147/pgpm.s107710.

Article  CAS  Google Scholar 

Skiles JL, Chiang C, Li CH, Martin S, Smith EL, Olbara G, et al. CYP3A5 genotype and its impact on vincristine pharmacokinetics and development of neuropathy in Kenyan children with cancer. Pediatr Blood Cancer. 2018;65(3):1–14. https://doi.org/10.1002/pbc.26854.

Article  CAS  Google Scholar 

Noll EM, Eisen C, Stenzinger A, Espinet E, Muckenhuber A, Klein C, et al. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. Nat Med. 2016;22:278–87. https://doi.org/10.1038/nm.4038.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mao Q, Wang L, Liang Y, Dong G, Xia W, Hu J, et al. CYP3A5 suppresses metastasis of lung adenocarcinoma through ATOH8/Smad1 axis. Am J Cancer Res. 2020;10:3194–211.

CAS  PubMed  PubMed Central  Google Scholar 

Gorjala P, Kittles RA, Goodman OB Jr, Mitra R. Role of CYP3A5 in modulating androgen receptor signaling and its relevance to African American men with prostate cancer. Cancers. 2020;12(4):989–1005. https://doi.org/10.3390/cancers12040989.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang F, Chen L, Yang Y-C, Wang X-m, Wang R-Y, Li L, et al. CYP3A5 functions as a tumor suppressor in hepatocellular carcinoma by regulating mTORC2/Akt signaling. Cancer Res. 2015;75:1470–81. https://doi.org/10.1158/0008-5472.can-14-1589.

Buck E, Sprick M, Gaida MM, Grüllich C, Weber TF, Herpel E, et al. Tumor response to irinotecan is associated with CYP3A5 expression in colorectal cancer. Oncol Lett. 2019;17:3890–8. https://doi.org/10.3892/ol.2019.10043.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Werk AN, Cascorbi I. Functional gene variants of CYP3A4. Clin Pharmacol Ther. 2014;96(3):340–8. https://doi.org/10.1038/clpt.2014.129.

Article  CAS  PubMed  Google Scholar 

Wang J, Buchman CD, Seetharaman J, Miller DJ, Huber AD, Wu J, et al. Unraveling the structural basis of selective inhibition of human cytochrome P450 3A5. J Am Chem Soc. 2021;143:18467–80. https://doi.org/10.1021/jacs.1c07066.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Song X, Kamenecka TM, Cameron MD. Discovery of a highly selective CYP3A4 inhibitor suitable for reaction phenotyping studies and differentiation of CYP3A4 and CYP3A5. Drug Metab Dispos. 2012;40(9):1803–9. https://doi.org/10.1124/dmd.112.046144.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walsky RL, Obach RS, Hyland R, Kang P, Zhou S, West M, et al. Selective mechanism-based inactivation of CYP3A4 by CYP3cide (PF-04981517) and its utility as an in vitro tool for delineating the relative roles of CYP3A4 versus CYP3A5 in the metabolism of drugs. Drug Metab Dispos. 2012;40:1686–97. https://doi.org/10.1124/dmd.112.045302.

Article  CAS  PubMed  Google Scholar 

Wright WC, Chenge J, Wang J, Girvan HM, Yang L, Chai SC, et al. Clobetasol propionate is a heme-mediated selective inhibitor of human cytochrome P450 3A5. J Med Chem. 2020;63:1415–33. https://doi.org/10.1021/acs.jmedchem.9b02067.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di L. Reaction phenotyping to assess victim drug-drug interaction risks. Expert Opin Drug Discovery. 2017;12(11):1105–15. https://doi.org/10.1080/17460441.2017.1367280.

Article  CAS  Google Scholar 

Wu J, Guan X, Dai Z, He R, Ding X, Yang L, et al. Molecular probes for human cytochrome P450 enzymes: recent progress and future perspectives. Coord Chem Rev. 2021;427:213600. https://doi.org/10.1016/j.ccr.2020.213600.

Article  CAS  Google Scholar 

Li X, Jeso V, Heyward S, Walker GS, Sharma R, Micalizio GC, et al. Characterization of T-5 N-oxide formation as the first highly selective measure of CYP3A5 activity. Drug Metab Dispos. 2014;42:334–42. https://doi.org/10.1124/dmd.113.054726.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif