Expanding the genetic and phenotypic spectrum of congenital myasthenic syndrome: new homozygous VAMP1 splicing variants in 2 novel individuals

Trimble WS, Cowan DM, Scheller RH. VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci USA. 1988;85:4538–42.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Raptis A, Torrejon-Escribano B, Gomez de Aranda I, Blasi J. Distribution of synaptobrevin/VAMP 1 and 2 in rat brain. J Chem Neuroanat. 2005;30:201–11.

Article  CAS  PubMed  Google Scholar 

Elferink LA, Trimble WS, Scheller RH. Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. J Biol Chem. 1989;264:11061–4.

Article  CAS  PubMed  Google Scholar 

Hasan N, Corbin D, Hu C. Fusogenic pairings of vesicle-associated membrane proteins (VAMPs) and plasma membrane t-SNAREs-VAMP5 as the exception. PLoS One. 2010;5:e14238.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Yan C, Jiang J, Yang Y, Geng X, Dong W. The function of VAMP2 in mediating membrane fusion: an overview. Front Mol Neurosci. 2022;15:948160.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Sugiura Y, Lin W. The role of synaptobrevin1/VAMP1 in Ca2+-triggered neurotransmitter release at the mouse neuromuscular junction. J Physiol. 2011;589:1603–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berglund L, Hoffmann HJ, Dahl R, Petersen TE. VAMP-1 has a highly variable C-terminus generated by alternative splicing. Biochem Biophys Res Commun. 1999;264:777–80.

Article  CAS  PubMed  Google Scholar 

Bourassa CV, Meijer IA, Merner ND, Grewal KK, Stefanelli MG, Hodgkinson K, et al. VAMP1 mutation causes dominant hereditary spastic ataxia in Newfoundland families. Am J Hum Genet. 2012;91:548–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen XM, Scola RH, Lorenzoni PJ, Kay CS, Werneck LC, Brengman J, et al. Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome. Ann Clin Transl Neurol. 2017;4:130–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salpietro V, Lin W, Delle Vedove A, Storbeck M, Liu Y, Efthymiou S, et al. Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome. Ann Neurol. 2017;81:597–603.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monies D, Abouelhoda M, AlSayed M, Alhassnan Z, Alotaibi M, Kayyali H, et al. The landscape of genetic diseases in Saudi Arabia based on the first 1000 diagnostic panels and exomes. Hum Genet. 2017;136:921–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Muhaizea MA, AlQuait L, AlRasheed A, AlHarbi S, Albader AA, AlMass R, et al. Pyrostigmine therapy in a patient with VAMP1-related congenital myasthenic syndrome. Neuromuscul Disord. 2020;30:611–15.

Article  PubMed  Google Scholar 

Polavarapu K, Vengalil S, Preethish-Kumar V, Arunachal G, Nashi S, Mohan D, et al. Recessive VAMP1 mutations associated with severe congenital myasthenic syndromes - A recognizable clinical phenotype. Eur J Paediatr Neurol. 2021;31:54–60.

Article  CAS  PubMed  Google Scholar 

Luque J, Mendes I, Gomez B, Morte B, Lopez de Heredia M, Herreras E, et al. CIBERER: Spanish national network for research on rare diseases: A highly productive collaborative initiative. Clin Genet. 2022;101:481–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arteche-Lopez A, Gomez Rodriguez MJ, Sanchez Calvin MT, Quesada-Espinosa JF, Lezana Rosales JM, Palma Milla C, et al. Towards a change in the diagnostic algorithm of autism spectrum disorders: evidence supporting whole exome sequencing as a first-tier test. Genes (Basel). 2021;12:560.

Article  CAS  PubMed  Google Scholar 

Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature. 1998;395:347–53.

Article  ADS  CAS  PubMed  Google Scholar 

Zimmermann J, Trimbuch T, Rosenmund C. Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons. J Neurophysiol. 2014;112:1559–65.

Article  CAS  PubMed  Google Scholar 

Pang ZP, Sudhof TC. Cell biology of Ca2+-triggered exocytosis. Curr Opin Cell Biol. 2010;22:496–505.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pinero TA, Soukarieh O, Rolain M, Alvarez K, Lopez-Kostner F, Torrezan GT, et al. MLH1 intronic variants mapping to + 5 position of splice donor sites lead to deleterious effects on RNA splicing. Fam Cancer. 2020;19:323–36.

Article  CAS  PubMed  Google Scholar 

Freund M, Asang C, Kammler S, Konermann C, Krummheuer J, Hipp M, et al. A novel approach to describe a U1 snRNA binding site. Nucleic Acids Res. 2003;31:6963–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11:377–94.

Article  CAS  PubMed  Google Scholar 

Crehalet H, Latour P, Bonnet V, Attarian S, Labauge P, Bonello N, et al. U1 snRNA mis-binding: a new cause of CMT1B. Neurogenetics. 2010;11:13–9.

Article  CAS  PubMed  Google Scholar 

Supek F, Lehner B, Lindeboom RGH. To NMD or Not To NMD: nonsense-mediated mRNA decay in cancer and other genetic diseases. Trends Genet. 2021;37:657–68.

Article  CAS  PubMed  Google Scholar 

Ohno K, Takeda JI, Masuda A. Rules and tools to predict the splicing effects of exonic and intronic mutations. Wiley Interdiscip Rev RNA. 2018;9:e1451.

留言 (0)

沒有登入
gif