Novel Therapies for Lipoprotein(a): Update in Cardiovascular Risk Estimation and Treatment

Utermann G. The mysteries of lipoprotein(a). Science. 1989;246:904–10. https://doi.org/10.1126/science.2530631.

Article  ADS  PubMed  Google Scholar 

• Nissen SE, Wolski K, Cho L, et al. Lipoprotein(a) levels in a global population with established atherosclerotic cardiovascular disease. Open Heart. 2022;9:e002060. https://doi.org/10.1136/openhrt-2022-002060. Large multicentre study describing differences in Lp(a) levels across different populations with atherosclerotic cardiovascular disease.

Article  PubMed  PubMed Central  Google Scholar 

Simony SB, Mortensen MB, Langsted A, Afzal S, Kamstrup PR, Nordestgaard BG. Sex differences of lipoprotein(a) levels and associated risk of morbidity and mortality by age: The Copenhagen General Population Study. Atherosclerosis. 2022;355:76–82. https://doi.org/10.1016/j.atherosclerosis.2022.06.1023.

Article  PubMed  Google Scholar 

Clarke R, Peden JF, Hopewell JC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361:2518–28. https://doi.org/10.1056/NEJMoa0902604.

Article  PubMed  Google Scholar 

Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301:2331–9. https://doi.org/10.1001/jama.2009.801.

Article  PubMed  Google Scholar 

Collaboration ERF. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302:412–23. https://doi.org/10.1001/jama.2009.1063.

Article  Google Scholar 

Thanassoulis G, Campbell CY, Owens DS, et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368:503–12. https://doi.org/10.1056/NEJMoa1109034.

Article  PubMed  PubMed Central  Google Scholar 

Kamstrup PR, Tybjaerg-Hansen A, Nordestgaard BG. Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population. J Am Coll Cardiol. 2014;63:470–7. https://doi.org/10.1016/j.jacc.2013.09.038.

Article  PubMed  Google Scholar 

Kamstrup PR, Nordestgaard BG. Elevated Lipoprotein(a) Levels, LPA Risk Genotypes, and Increased Risk of Heart Failure in the General Population. JACC Heart Fail. 2016;4:78–87. https://doi.org/10.1016/j.jchf.2015.08.006.

Article  PubMed  Google Scholar 

Langsted A, Kamstrup PR, Nordestgaard BG. High Lipoprotein(a) and low risk of major bleeding in brain and airways in the general population: A Mendelian randomization study. Clin Chem. 2017;63:1714–23. https://doi.org/10.1373/clinchem.2017.276931.

Article  PubMed  Google Scholar 

Langsted A, Kamstrup PR, Nordestgaard BG. High lipoprotein(a) and high risk of mortality. Eur Heart J. 2019;40:2760–70. https://doi.org/10.1093/eurheartj/ehy902.

Article  PubMed  Google Scholar 

Wang ZW, Li M, Li JJ, Liu NF. Association of lipoprotein(a) with all-cause and cause-specific mortality: A prospective cohort study. Eur J Intern Med. 2022;106:63–70. https://doi.org/10.1016/j.ejim.2022.09.010.

Article  PubMed  Google Scholar 

Levin MG, Zuber V, Walker VM, et al. Prioritizing the role of major lipoproteins and subfractions as risk factors for peripheral artery disease. Circulation. 2021;144:353–64. https://doi.org/10.1161/CIRCULATIONAHA.121.053797.

Article  PubMed  PubMed Central  Google Scholar 

Kamstrup PR, Tybjaerg-Hansen A, Nordestgaard BG. Genetic evidence that lipoprotein(a) associates with atherosclerotic stenosis rather than venous thrombosis. Arterioscler Thromb Vasc Biol. 2012;32:1732–41. https://doi.org/10.1161/ATVBAHA.112.248765.

Article  PubMed  Google Scholar 

Di Maio S, Lamina C, Coassin S, et al. Lipoprotein(a) and SARS-CoV-2 infections: Susceptibility to infections, ischemic heart disease and thromboembolic events. J Intern Med. 2022;291:101–7. https://doi.org/10.1111/joim.13338.

Article  PubMed  Google Scholar 

Jackson CL, Garg PK, Guan W, et al. Lipoprotein(a) and coronary artery calcium in comparison with other lipid biomarkers: the multi-ethnic study of atherosclerosis. J Clin Lipidol. 2023. https://doi.org/10.1016/j.jacl.2023.06.002.

Article  PubMed  Google Scholar 

Kaiser Y, Daghem M, Tzolos E, et al. Association of Lipoprotein(a) with atherosclerotic plaque progression. J Am Coll Cardiol. 2022;79:223–33. https://doi.org/10.1016/j.jacc.2021.10.044.

Article  PubMed  PubMed Central  Google Scholar 

Chandra S, Nagar S, Shukla A, et al. Correlation of lipoprotein (a) levels and plaque morphology in very young acute coronary syndrome patients using optical coherence tomography. Indian Heart J. 2022;74:357–62. https://doi.org/10.1016/j.ihj.2022.09.001.

Article  PubMed  PubMed Central  Google Scholar 

van der Valk FM, Bekkering S, Kroon J, et al. Oxidized Phospholipids on Lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation. 2016;134:611–24. https://doi.org/10.1161/CIRCULATIONAHA.116.020838.

Article  PubMed  PubMed Central  Google Scholar 

Tsimikas S, Duff GW, Berger PB, et al. Pro-inflammatory interleukin-1 genotypes potentiate the risk of coronary artery disease and cardiovascular events mediated by oxidized phospholipids and lipoprotein(a). J Am Coll Cardiol. 2014;63:1724–34. https://doi.org/10.1016/j.jacc.2013.12.030.

Article  PubMed  PubMed Central  Google Scholar 

Naka KK, Bechlioullis A, Marini A, et al. Interleukin-1 genotypes modulate the long-term effect of lipoprotein(a) on cardiovascular events: the Ioannina Study. J Clin Lipidol. 2018;12:338–47. https://doi.org/10.1016/j.jacl.2017.12.004.

Article  PubMed  Google Scholar 

Puri R, Nissen SE, Arsenault BJ, et al. Effect of C-Reactive protein on Lipoprotein(a)-Associated cardiovascular risk in optimally treated patients with high-risk vascular disease: a prespecified secondary analysis of the ACCELERATE trial. JAMA Cardiol. 2020;5:1136–43. https://doi.org/10.1001/jamacardio.2020.2413.

Article  PubMed  Google Scholar 

Wang Y, Wang Z, Yang Q, et al. Autosomal recessive transmission of MYBPC3 mutation results in malignant phenotype of hypertrophic cardiomyopathy. PLoS ONE. 2013;8:e67087. https://doi.org/10.1371/journal.pone.0067087.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Thomas PE, Vedel-Krogh S, Kamstrup PR, Nordestgaard BG. Lipoprotein(a) is linked to atherothrombosis and aortic valve stenosis independent of C-reactive protein. Eur Heart J. 2023;44:1449–60. https://doi.org/10.1093/eurheartj/ehad055.

Article  PubMed  Google Scholar 

O’Donoghue ML, Morrow DA, Tsimikas S, et al. Lipoprotein(a) for risk assessment in patients with established coronary artery disease. J Am Coll Cardiol. 2014;63:520–7. https://doi.org/10.1016/j.jacc.2013.09.042.

Article  PubMed  Google Scholar 

Verbeek R, Hoogeveen RM, Langsted A, et al. Cardiovascular disease risk associated with elevated lipoprotein(a) attenuates at low low-density lipoprotein cholesterol levels in a primary prevention setting. Eur Heart J. 2018;39:2589–96. https://doi.org/10.1093/eurheartj/ehy334.

Article  PubMed  Google Scholar 

• O’Donoghue ML, Fazio S, Giugliano RP, et al. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk. Circulation. 2019;139:1483–92. https://doi.org/10.1161/CIRCULATIONAHA.118.037184. Post-hoc analyses of the FOURIER trial showing that in secondary prevention Lp(a) associates with cardiovascular risk, and that degree of Lp(a) reduction when receiving evolocumab is associated with the degree of risk reduction.

Article  PubMed  Google Scholar 

• Madsen CM, Kamstrup PR, Langsted A, Varbo A, Nordestgaard BG. Lipoprotein(a)-Lowering by 50 mg/dL (105 nmol/L) may be needed to reduce cardiovascular disease 20% in secondary prevention: a population-based study. Arterioscler Thromb Vasc Biol. 2020;40:255–66. https://doi.org/10.1161/ATVBAHA.119.312951. Large cohort study estimating the needed Lp(a) lowering effect to achieve a 20% cardiovascular risk reduction in secondary prevention as well as showing that the relative cardiovascular risk associated of Lp(a) is similar for individuals with LDL cholesterol below 1.8 mmol/L and above 2.6 mmol/L.

Article  PubMed  Google Scholar 

• Langsted A, Nordestgaard BG, Kamstrup PR. Low lipoprotein(a) levels and risk of disease in a large, contemporary, general population study. Eur Heart J. 2021;42:1147–56. https://doi.org/10.1093/eurheartj/ehaa1085. Large cohort study finding no increased risk of cancer, infections, respiratory, or endocrine diseases associated with low Lp(a) compared to high Lp(a).

Article  PubMed  Google Scholar 

Mora S, Kamstrup PR, Rifai N, Nordestgaard BG, Buring JE, Ridker PM. Lipoprotein(a) and risk of type 2 diabetes. Clin Chem. 2010;56:1252–60. https://doi.org/10.1373/clinchem.2010.146779.

Article  PubMed  PubMed Central  Google Scholar 

Kamstrup PR, Nordestgaard BG. Lipoprotein(a) concentrations, isoform size, and risk of type 2 diabetes: a Mendelian randomisation study. Lancet Diabetes Endocrinol. 2013;1:220–7. https://doi.org/10.1016/S2213-8587(13)70064-0.

Article  PubMed  Google Scholar 

Gudbjartsson DF, Thorgeirsson G, Sulem P, et al. Lipoprotein(a) concentration and risks of cardiovascular disease and diabetes. J Am Coll Cardiol. 2019;74:2982–94. https://doi.org/10.1016/j.jacc.2019.10.019.

Article  PubMed  Google Scholar 

Tolbus A, Mortensen MB, Nielsen SF, Kamstrup PR, Bojesen SE, Nordestgaard BG. Kringle IV Type 2, not low Lipoprotein(a), as a cause of diabetes: a novel genetic approach using SNPs associated selectively with Lipoprotein(a) concentrations or with Kringle IV Type 2 repeats. Clin Chem. 2017;63:1866–76. https://doi.org/10.1373/clinchem.2017.277103.

Article  PubMed  Google Scholar 

Chasman DI, Shiffman D, Zee RY, et al. Polymorphism in the apolipoprotein(a) gene, plasma lipoprotein(a), cardiovascular disease, and low-dose aspirin therapy. Atherosclerosis. 2009;203:371–6. https://doi.org/10.1016/j.atherosclerosis.2008.07.019.

Article  PubMed  Google Scholar 

• Lacaze P, Bakshi A, Riaz M, et al. Aspirin for primary prevention of cardiovascular events in relation to Lipoprotein(a) genotypes. J Am Coll Cardiol. 2022;80:1287–98. https://doi.org/10.1016/j.jacc.2022.07.027. Post hoc study of the ASPREE randomized clinical trial of older individuals without cardiovascular disease. Showed that individuals with genetically elevated Lp(a) due to the rs3789220 variant receiving aspirin 100 mg daily did not have increased risk of major cardiovascular events compared with individuals without genetically elevated Lp(a), whereas those with genetically elevated Lp(a) not receiving aspirin did have increased risk.

留言 (0)

沒有登入
gif