Learning to Struggle: Supporting Middle-grade Teachers’ Understanding of Productive Struggle in STEM Teaching and Learning

Baker, K., Jessup, N. A., Jacobs, V. R., Empson, S. B., & Case, J. (2020). Productive struggle inaction. Mathematics Teacher: Learning & Teaching PK-12, 113(5), 361-374

Article  Google Scholar 

Barkatsas, A. T., & Malone, J. (2005). A typology of mathematics teachers’ beliefs about teaching and learning mathematics and instructional practices. Mathematics Education Research Journal, 17, 69–90.

Article  ADS  Google Scholar 

Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational Researcher, 33(8), 3–15. https://doi.org/10.3102/0013189X03300800.

Article  Google Scholar 

Brown, R. E., Bogiages, C. A. (2019). Professional development through STEM integration: How early career math and science teachers respond to experiencing integrated STEM tasks. International Journal of Science and Mathematics Education, 17, 111-128. https://doi.org/10.1007/s10763-017-9863-x

Article  ADS  Google Scholar 

Brown, J. S., Collins, A., & Duguid, P. (1989). Situation cognition and the culture of learning. Educational Researcher, 18(1), 32-42.

Article  Google Scholar 

Brown, T. & Wyatt, J. (2010). Design thinking for social innovation. Stanford Social Innovation Review, 8(1), 30-35.

Google Scholar 

Bush, S. B., Karp, K. S., Cox, R., Cook, K. L., Albanese, J., & Karp, M. (2018). Design thinking framework: shaping powerful mathematics. Mathematics Teaching in the Middle School, e1-e5.

Cirillo, M., Pelesko, J. A., Felto-Kestler, M. D., & Rubel, L. (2016). Perspectives on modeling in school mathematics, pp. In C. R. Hirsch, & A. R. McDuffie, (Eds.) Annual perspectives in mathematics education: Mathematical modeling and modeling mathematics (3-16). National Council of Teachers of Mathematics.

Google Scholar 

Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glasser (pp. 453-494). Routledge.

Google Scholar 

Collins, A., & Kapur, M. (2014). Cognitive apprenticeship. In R. Sawyer (Ed.), The Cambridge handbook of the learning sciences (Cambridge Handbooks in Psychology, pp. 109–127). Cambridge University Press. https://doi.org/10.1017/CBO9781139519526.008

Cooper, R., Fitzgerald, A., & Carpendale, J. (2022). A reading group for science educators: An approach for developing collective pedagogical content knowledge in science education. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-022-10260-y

Article  Google Scholar 

Curtis, R., Cairns, D. R., & Bolyard, J. (2023). Design thinking in the middle grades: Transforming mathematics and science learning. NY: Teachers College.

Google Scholar 

Czerniak, C. (2007). Interdisciplinary science teaching. In S. Abell & N. Lederman (Eds.), Handbook of research on science education, 537–559. New York: Routledge.

Google Scholar 

Drake, C. (2006). Turning points: Using teachers’ mathematics life stories to understand the implementation of mathematics education reform. Journal of Mathematics Teacher Education, 9(6), 579–608.

Article  Google Scholar 

Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103-120. https://doi.org/10.1002/j.2168-9830.2005.tb00832

Article  Google Scholar 

Engle, R. A. (2006). Framing interactions to foster generative: A situation explanation of transfer in a community of learners classroom. Journal of the Learning Sciences, 15(4), 451–498.

Article  Google Scholar 

Fennema, E., Peterson, P. L., Carpenter, T. P., & Lubinski, C. A. (1990). Teachers’ attributions and beliefs about girls, boys, and mathematics. Educational Studies in Mathematics, 21(1), 55–69.

Article  Google Scholar 

Forzani, F. M. (2014). Understanding “core practices” and “practice-based” teacher education: Learning from the past. Journal of Teacher Education, 65, 357–368.

Article  Google Scholar 

Franke, M. L., Turrou, A. C., Webb, N. M., Ing, M., Wong, J., Shin, N., & Fernandez, C. (2015). Student engagement with others’ mathematical ideas: The role of teacher invitation and support moves. Elementary School Journal, 116(1), 126–148.

Article  Google Scholar 

Goldsmith, L. T., Doerr, H. M., & Lewis, C. C. (2014). Mathematics teachers’ learning: A conceptual framework and synthesis of research. Journal of Mathematics Teacher Education, 17, 5-36. https://doi.org/10.1007/s10857-013-9245-4

Article  Google Scholar 

Gresfali, M., Martin, T., Hand, V., & Greeno, J. (2009). Constructing competence: An analysis of student participation in the activity systems of mathematics classrooms. Educational Studies in Mathematics, 70(1), 49–70.

Article  Google Scholar 

Hafiz, R. M., & Ayop, S. K. (2019). Engineering design process in STEM education: A systematics review. International Journal of Academic Research in Business & Social Sciences, 9(5), 676-679.

Google Scholar 

Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371–404). Greenwich, CT: Information Age Publishing.

Google Scholar 

Huinker, D., & Bill, V. (2017). Taking action: Implementing effective mathematics teaching practices, K-grade 5. Reston, VA: NCTM.

Google Scholar 

Kapur, M. (2008). Productive failure. Cognition and Instruction, 26(3), 379–424.

Article  Google Scholar 

Kapur, M. (2010). Productive failure in mathematical problem solving. Instructional Science, 38(6), 523–550.

Article  Google Scholar 

Kapur, M. (2011). A further study of productive failure in mathematical problem solving: Unpacking the design components. Instructional Science, 39(4), 561–579.

Article  Google Scholar 

Kapur, M., & Bielaczyc, K. (2012). Designing for productive failure. Journal of the Learning Sciences, 21(1), 45–83.

Article  Google Scholar 

Kelley, D. & Kelley, T. (2013) Creative confidence: Unleashing the creative potential within us all. New York, NY: Crown Business.

Google Scholar 

Lieberman, A., & Mace, D. H. P. (2008). Teacher learning: The key to educational reform. Journal of Teacher Education, 59(3), 226-234. https://doi.org/10.1177/0022487108317020

Article  Google Scholar 

Lotan, R. (2003). Group-worthy tasks. Educational Leadership, 60(6), 72-75.

Google Scholar 

Louie, N. L. (2017). The culture of exclusion in mathematics education and its persistence in equity-oriented teaching. Journal for Research in Mathematics Education, 48(5), 488-519.

Article  Google Scholar 

McDonald, M., Kazemi, E., & Kavanaugh, S. S. (2013). Core practices and pedagogies of teacher education: A call for a common language and collective activity. Journal of Teacher Education, 64, 378–386.

Article  Google Scholar 

National Council of Teachers of Mathematics (NCTM). (2014). Principles to actions: Ensuring mathematical success for all. National Council of Teachers of Mathematics.

Google Scholar 

NGA & CCSSO, N. G. A. C. for B. P. and C. of C. S. S. O. (2010). Common core standards for mathematics. Retrieved from http://www.corestandards.org

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. National Academies Press. Retrieved from https://www.nextgenscience.org/

Opfer, V. D., & Pedder, D. (2011). Conceptualizing teacher professional learning. Review of Educational Research, 81(3), 376-407. https://doi.org/10.3102/0034654311413609

Article  Google Scholar 

Patton, M. Q. (2014). Qualitative research & evaluation methods: Integrating theory and practice (4th ed.). Sage.

Google Scholar 

Piaget, J. (1960). The general problems of the psycho-biological development of the child. In Discussions on child development (Vol. 4, pp. 3–27). London: Tavistock.

Rojas, L., & Liou, D. D. (2017). Social justice teaching through the sympathetic touch of caring and high expectations for students of color. Journal of Teacher Education, 68(1), 28–40. https://doi.org/10.1177/0022487116676314

Article  Google Scholar 

Saldaña, J. (2013). The coding manual for qualitative researchers (2nd ed.). Thousand Oaks, CA: Sage Publications, Inc.

Google Scholar 

Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of encouraging original student production in statistics instruction. Cognition and Instruction, 22, 129–184.

Article  Google Scholar 

Skemp, R. R. (1971). The psychology of learning mathematics. Harmondsworth, UK: Penguin.

Google Scholar 

Stein, M. K., Smith, M. S., Henningsen, M. A., & Silver, E. A. (2009). Implementing standards-based mathematics instruction: A casebook for professional development (2nd ed.). Reston, VA: National Council of Teachers of Mathematics.

Google Scholar 

Stigler, J. W., & Hiebert, J. (2004). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: Free Press.

Google Scholar 

Tools for ambitious science teaching. (n.d.). Retrieved from http://ambitiousscienceteaching.org/us/

Townsend, C., Slavit, D., & McDuffie, A. R. (2018). Supporting all learners in productive struggle. Mathematics Teaching in the Middle School, 216–224. https://doi.org/10.5951/mathteacmiddscho.23.4.00e1

Valentine, K., & Bolyard, J. (2018, April 13-17). Creating a Classroom Culture that Supports Productive Struggle: Pre-service Teachers’ Reflections on Teaching Mathematics [Paper presentation]. American Educational Research Association, New York, NY, United States.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

Google Scholar 

Warshauer, H. K. (2015). Productive struggle in middle school mathematics classrooms. Journal of Mathematics Teacher Education, 18(4), 375–400.

Article  Google Scholar 

留言 (0)

沒有登入
gif